Python与数据科学实战课程——第三章Pandas:Reindexing Series and DataFrame

本文介绍了Python数据科学中Pandas库的Reindex功能,讲解了如何对Series和DataFrame进行添加和删除索引的操作。通过示例展示了如何使用reindex方法调整数据结构,包括填充缺失值(NaN)以及简化数据框。
摘要由CSDN通过智能技术生成
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

Series reindex

s1 = Series([1,2,3,4],index=["A","B","C","D"])
s1

A 1
B 2
C 3
D 4
dtype: int64

s1.reindex(index=["A","B","C","D","E"])

A 1.0
B 2.0
C 3.0
D 4.0
E NaN
dtype: float64

s1.reindex(index=["A","B","C","D","E"],fill_value=10)

A 1
B 2
C 3
D 4
E 10
dtype: int64

s2 = Series(["a","b","c"],index=[1,5,10])
s2

1 a
5 b
10 c
dtype: object


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值