优化入门

优化问题涉及决策变量、目标函数和约束条件。基本形式包括决策变量x、目标函数f(x)以及不等式约束g(x)和等式约束h(x)。通过实例解释了如何在资源有限的情况下,通过调整决策变量以实现目标函数的最大化或最优化。优化问题分为有约束和无约束、线性与非线性、离散与连续、可微分与不可微分以及大规模与小规模等类型。
摘要由CSDN通过智能技术生成

第一章:优化问题定义

什么是优化问题?

基本形式

其中,x为决策变量,f(x)为目标函数,所有的g(x)和h(x)都约束条件,g(x)为不等式约束(inequality constraints),h(x)为等式约束(equality constraints),满足限制函数的x的集合称为可行集

通俗解释

考虑如下场景:如一个公司生产不同的产品,可以生产的有n种,每种产品所需要的原材料和利润是不同的。公司要决定每种产品具体生产多少,才能获取最大收益/长足发展/最高人气

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值