machine learning个人笔记系列(六)

向Andrew Ng的机器学习课程致敬

使用机器学习的建议

这章主要讨论如何优化算法。

  1. 将数据集划分为3小类数据集:训练集,验证集,测试集
  2. 使用训练集来训练模型,使用验证集来选择参数,使用测试集来验证效果

训练错误与验证错误

先来看看模型的训练错误率与验证集错误率的关系
如下图所示:

这里写图片描述

这里写图片描述

以线性回归模型为例,随着特征值的幂越来越高,训练集的错误率越来越低,而验证集的错误率则有一个先下降后上升的过程。先下降是因为之前是欠拟合(bias),后上升是因为过拟合(variance)。

错误率与正则化参数

再来看加上正则项后,错误率与正则化参数的关系,如下图所示:

这里写图片描述

学习曲线

下面是欠拟合与过拟合两种场景的错误率曲线图,欠拟合时,训练错误率与验证错误率都很高。
这里写图片描述

过拟合则训练错误率比较小,但是验证错误率会比较高。
这里写图片描述

调试算法

这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值