实测谷歌Veo 3.1视频模型!附零门槛免费使用攻略和提示词

哈喽,大家好

我是阿星👋

Veo 3.1 上线啦

萨拉二的热度还没过去

又来一波sota级视频模型?其实3.1这次最大的亮点还是高清。慢慢看——

图片

最快的使用方法

先说咋用,无需乱七八糟的操作

小白现在使用veo3.1最快的办法就2个

Lovart、Flowith

以下是效果和试用方法——

1、在lovart里试用veo3.1

现在lovart里试用veo3.1,目前是全免的

图片

首先你需要新建项目👉🏻点影片生成器👉🏻选择veo3.1

图片

直接在对话框输入提示词就好啦~

注意,一开始会一直弹出来升级广告

其实如果你点skip就会不要求你升级了

可能会弹出来好几次,你忽略之后仍旧是可以0积分生成的

这是他们官方这几天的活动

图片

阿星生成的示例:

胡子男倒水

Veo3.1生成情侣在海边的视频

这画质高清的有点过分,这白噪音,这冰块声音,这人体骨骼(女生右胳膊有点变形)

不说真的不太可能有人知道是ai生成的,对于非专业观众来说足够了

 

提示词:

场景开始是一个特写镜头,画面中一位留着胡须的男子正将带有冰块的鲜艳蓝色液体倒入一个水晶玻璃杯中,柔和的自然光洒在他身上,天空稍有阴霾。慢慢地,摄像机开始向右平移,沿着一条直线平稳滑动,仿佛固定在轨道上一般,画面逐渐展开,展现出男子周围更多的场景。随着摄像机向右滑动,画面优雅地展开,移动结束时,一位身着时尚比基尼的美丽女子自信地站在那里,姿态优雅,在宁静的背景衬托下完美入镜。这个镜头干净、精致,视觉效果醒目,温暖的电影色调传递出精致与宁静。

踩滑板经典桥段

veo3.1生成滑板视频

这个视频对人体重心的把握还可以

视频的结尾直接往后仰的惯性非常自然

但是感觉腿部有点变形,特别是往下着陆的时候

提示词:

镜头平稳地从左向右环绕着一名在半空中定格跳跃的男性滑板手旋转,背景是鲜艳的蓝天,明亮的太阳在他的格子衬衫和脚下的滑板上投下锐利的镜头光晕和温暖的高光。他的身体完美地定格在空中,面部表情和滑板底部的图案细节清晰可见。镜头环绕约270度,在中等距离拍摄,随着下方的郊区房屋和停放的汽车在背景中微微移动,捕捉到了戏剧性的视差变化。24毫米镜头搭配适度的景深,清晰地突出了主体,同时使远处的街区稍有虚化,细微的空中灰尘和镜头光晕颗粒在镜头附近飘动,强调了这一悬浮的子弹时间瞬间。光线来自上方的太阳,自然而明亮,投射出逼真的阴影和高光,丰富了画面的动态活力。镜头最后定格在滑板手半空中的四分之三侧面特写,滑板的轮子刚好从画面前景掠过,作为一个小小的前景遮挡物,增强了沉浸感。

一段提示词制作双屏效果

veo3.1生成黑白电影视频

直接给你生成两屏分镜

省的你自己分镜了

仔细这两个演员的演技

完全没有ai的感觉

而且提示词里只是说了要有电影的美感

左边男演员的脸就是二分之一侧面光

这摄影手法真的发挥的不错

 
 

提示词:

无缝垂直分屏动态视频。左视频:一只手将老式转盘电话的听筒举到耳边。无对白。面部特写。右视频:通话另一端的视角,展示转盘电话在桌上响铃时震动, 此人看起来很紧张。她没有接电话,任由它响着。具有黑色电影的灯光和美感。

2、在flowith里试用veo3.1

现在去flowith使用的时候

需要手动勾选一下才能看到模型

先选择图片/视频生成模式

然后勾选veo3.1输入你的提示词就可以坐等啦时间稍微有点长

图片

从flowith发在群里的视频对比文档来看

我主观感觉3.1似乎比3更有视角张力

色彩上也更加吸睛

图片

下面是几个视频分别是flowtih文档里的范例,大家可以感受下区别

veo3、veo3.1的对比

veo3生成飙车过视频

veo3.1生成飙车视频

veo3.1、klingv2.1的对比

Veo3.1生成猴子视频

可灵2.1生成猴子视频

虽然部分case还有肢体变形、穿模、配音不够真实的问题,但是总体来看,现在确实已经进化到了普通观众基本注意不到瑕疵的地步,画质的高清也足够应付普通短剧。

那么你打算怎么拿他们发挥创意呢?

是时候思考这个问题了~

我是阿星,我们下期再见👋

谷歌Veo 3 是一个强大的文本转视频生成模型,能够根据图像或文本提示生成高质量、高清的视频。虽然目前 Veo 3 的完整实现 API 接口并未完全开源,但可以通过 Vertex AI 平台使用该模型的预训练版本。以下是一个模拟的 API 使用示例,展示了如何通过类似 Veo 3 的模型将图像转换为视频。 假设有一个基于 PyTorch 的简化版本,以下是一个示例代码片段,用于演示图像到视频生成的基本流程: ```python import torch from torchvision import transforms from model import Veo3Model # 假设的模型定义模块 # 加载预训练的 Veo3 模型 model = Veo3Model.load_pretrained("veo3_pretrained.pth") model.eval() # 图像预处理 preprocess = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor(), ]) # 加载输入图像 input_image = Image.open("input_image.jpg") input_tensor = preprocess(input_image).unsqueeze(0) # 添加 batch 维度 # 设置生成参数 num_frames = 30 # 生成视频的帧数 fps = 10 # 视频帧率 # 生成视频 with torch.no_grad(): generated_video = model.generate_video(input_tensor, num_frames=num_frames) # 保存生成的视频 output_path = "generated_video.mp4" save_video(generated_video, output_path, fps=fps) print(f"生成的视频已保存到 {output_path}") ``` 在上述代码中,`Veo3Model` 是一个假设的模型类,`generate_video` 是模型的一个方法,用于从输入图像生成视频。`save_video` 是一个假设的函数,用于将生成的视频帧保存为 MP4 文件。 请注意,这只是一个示例,实际的 Veo 3 API 可能会有不同的接口参数。对于实际使用,建议查阅 Google 的官方文档或 GitHub 项目页面以获取最新的 API 文档示例代码[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值