7-1 树的同构 (20 分)
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1 |
图2 |
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -结尾无空行
输出样例1:
Yes
结尾无空行
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
代码:
/*
思路:题中说树的同构就是左右孩子交换,那么左右孩子的ASCII值之和就是不变的,是一直相等的。
但是要注意只有一个节点并且不相等的情况
*/
#include <bits/stdc++.h>
using namespace std;
struct node
{
char id;
int left;
int right;
};
int n1, n2;
int main()
{
cin >> n1;
vector<node> v1(n1);
for (int i = 0; i < n1; i++)
{
char a, b, c;
cin >> a >> b >> c;
v1[i].id = a;
v1[i].left = (b == '-' ? -1 : b - '0');
v1[i].right = (c == '-' ? -1 : c - '0');
}
cin >> n2;
vector<node> v2(n2);
for (int i = 0; i < n2; i++)
{
char a, b, c;
cin >> a >> b >> c;
v2[i].id = a;
v2[i].left = (b == '-' ? -1 : b - '0');
v2[i].right = (c == '-' ? -1 : c - '0');
}
if (n1 == 1 && n2 == 1 && v1[0].id != v2[0].id)
{
cout << "No";
return 0;
}
//for循环里判断的必须至少第一个都相等
for (int i = 0; i < v1.size(); i++)
{
int value1 = 0, value2 = 0;
for (int j = 0; j < v2.size(); j++)
{
if (v1[i].id == v2[j].id)
{
if (v1[i].left != -1)
value1 += v1[v1[i].left].id;
if (v1[i].right != -1)
value1 += v1[v1[i].right].id;
if (v2[j].left != -1)
value2 += v2[v2[j].left].id;
if (v2[j].right != -1)
value2 += v2[v2[j].right].id;
}
if (value1 != value2)
{
cout << "No";
return 0;
}
}
}
cout << "Yes";
return 0;
}