7-1 树的同构 (20分)
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图2
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No
思路:
判断树的同构,上周的练习题里的函数题里就写过这个函数了:4-11 Isomorphic (10分) ,所以这道题主要的是,怎么写建树的函数。
而建树函数里很重要的是,怎么找到这棵树的根结点:设置一个flag数组,初始化全部为0,如果当前结点子树不为空,就令flag[i] = 1,最后找到flag = 0的结点就是根结点。
更新AC代码:
用结构体去把树模拟出来,通过两次遍历把树还原出来,因为输入的顺序不一样,依据node里c的值去排序(按照A,B,C的顺序),再比较每个结点左右子节点是不是一样的就行了
#include<bits/stdc++.h>
using namespace std;
int n;
struct node{
char c;
int l, r;
char lchild, rchild;
};
bool cmp(struct node n1, struct node n2){
return n1.c < n2.c;
}
int main(){
cin >> n;
struct node A[n+1];
for(int i = 0;i < n;i++){
char a, b, c;
cin >> a >> b >> c;
A[i].c = a;
if(b == '-') A[i].l = -1, A[i].lchild = '-';
else A[i].l = b - '0';
if(c == '-') A[i].r = -1, A[i].rchild = '-';
else A[i].r = c - '0';
}
for(int i = 0;i < n;i++){
if(A[i].l != -1) A[i].lchild = A[A[i].l].c;
if(A[i].r != -1) A[i].rchild = A[A[i].r].c;
}
sort(A, A + n, cmp);
cin >> n;
struct node B[n+1];
for(int i = 0;i < n;i++){
char a, b, c;
cin >> a >> b >> c;
B[i].c = a;
if(b == '-') B[i].l = -1, B[i].lchild = '-';
else B[i].l = b - '0';
if(c == '-') B[i].r = -1, B[i].rchild = '-';
else B[i].r = c - '0';
}
for(int i = 0;i < n;i++){
if(B[i].l != -1) B[i].lchild = B[B[i].l].c;
if(B[i].r != -1) B[i].rchild = B[B[i].r].c;
}
sort(B, B + n, cmp);
int flag = 1;
for(int i = 0;i < n;i++){
if(A[i].c != B[i].c){flag = 0;break;}
if(A[i].lchild == B[i].lchild && A[i].rchild == B[i].rchild || A[i].lchild == B[i].rchild && A[i].rchild == B[i].lchild) continue;
else {flag = 0;break;}
}
if(!flag) cout << "No";
else cout << "Yes";
}
AC代码:
#include<bits/stdc++.h>
using namespace std;
struct bitree{
char val;
int left,right;
};
bitree bt1[1010];
bitree bt2[1010];
int flag[1010]; //找根结点的数组
int Set(struct bitree bt[]){
int n;
cin >> n;
char a,b;
if(n == 0)
return -1;
memset(flag,0,sizeof(flag)); //初始化flag数组
for(int j = 0;j < n;j++){
cin >> bt[j].val;
cin >> a >> b;
if(a == '-'){ //子树为空,令其等于-1
bt[j].left = -1;
}else{
bt[j].left = a - '0'; //注意a是char类型,要转换为int型需要a-'0'
flag[a-'0'] = 1; //子树不为空,flag置为1
}
if(b == '-'){
bt[j].right = -1;
}else{
bt[j].right = b - '0';
flag[b-'0'] = 1;
}
}
int root;
for(int i = 0;i < n;i++){ //找到根结点
if(flag[i] != 1){
root = i;
}
}
return root;
}
int Isomophic(int root1 , int root2){ //判断同构的函数
if(root1 == -1 && root2 == -1)
return 1;
if((root1 == -1&&root2 != -1) || (root1 != -1&&root2 == -1) || bt1[root1].val != bt2[root2].val)
return 0;
return (Isomophic(bt1[root1].left,bt2[root2].left) && Isomophic(bt1[root1].right,bt2[root2].right)) || (Isomophic(bt1[root1].left,bt2[root2].right) && Isomophic(bt1[root1].right,bt2[root2].left));
}
int main(){
int tree1 = Set(bt1);
int tree2 = Set(bt2);
int result = Isomophic(tree1,tree2);
if(result)
cout << "Yes" << endl;
else
cout << "No" << endl;
}