7-1 树的同构 (20分)

本文探讨了如何通过编程解决二叉树同构问题,介绍了一种使用结构体和递归的方法来判断两棵树是否可以通过交换节点子节点实现同构。重点讲解了如何构造树结构、寻找根节点以及实现同构函数,适合那些对树结构和算法有深入理解的读者。
摘要由CSDN通过智能技术生成

7-1 树的同构 (20分)

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。

在这里插入图片描述

图2

现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):

8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -

输出样例1:

Yes

输入样例2(对应图2):

8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4

输出样例2:

No

思路:

判断树的同构,上周的练习题里的函数题里就写过这个函数了:4-11 Isomorphic (10分) ,所以这道题主要的是,怎么写建树的函数。

而建树函数里很重要的是,怎么找到这棵树的根结点:设置一个flag数组,初始化全部为0,如果当前结点子树不为空,就令flag[i] = 1,最后找到flag = 0的结点就是根结点。

更新AC代码:

用结构体去把树模拟出来,通过两次遍历把树还原出来,因为输入的顺序不一样,依据node里c的值去排序(按照A,B,C的顺序),再比较每个结点左右子节点是不是一样的就行了

#include<bits/stdc++.h>
using namespace std;
int n;
struct node{
    char c;
    int l, r;
    char lchild, rchild;
};
bool cmp(struct node n1, struct node n2){
    return n1.c < n2.c;
}
int main(){
    cin >> n;
    struct node A[n+1];
    for(int i = 0;i < n;i++){
        char a, b, c;
        cin >> a >> b >> c;
        A[i].c = a;
        if(b == '-')    A[i].l = -1, A[i].lchild = '-';
        else    A[i].l = b - '0';
        if(c == '-')    A[i].r = -1, A[i].rchild = '-';
        else    A[i].r = c - '0';
    }
    for(int i = 0;i < n;i++){
        if(A[i].l != -1)    A[i].lchild = A[A[i].l].c;
        if(A[i].r != -1)    A[i].rchild = A[A[i].r].c;
    }
    sort(A, A + n, cmp);
    cin >> n;
    struct node B[n+1];
    for(int i = 0;i < n;i++){
        char a, b, c;
        cin >> a >> b >> c;
        B[i].c = a;
        if(b == '-')    B[i].l = -1, B[i].lchild = '-';
        else    B[i].l = b - '0';
        if(c == '-')    B[i].r = -1, B[i].rchild = '-';
        else    B[i].r = c - '0';
    }
    for(int i = 0;i < n;i++){
        if(B[i].l != -1)    B[i].lchild = B[B[i].l].c;
        if(B[i].r != -1)    B[i].rchild = B[B[i].r].c;
    }
     sort(B, B + n, cmp);
    int flag = 1;
    for(int i = 0;i < n;i++){
        if(A[i].c != B[i].c){flag = 0;break;}
        if(A[i].lchild == B[i].lchild && A[i].rchild == B[i].rchild || A[i].lchild == B[i].rchild && A[i].rchild == B[i].lchild)    continue;
        else    {flag = 0;break;}
    }
    if(!flag)   cout << "No";
    else    cout << "Yes";
}

AC代码:

#include<bits/stdc++.h>
using namespace std;
struct bitree{
	char val;
	int left,right;
};
bitree bt1[1010];
bitree bt2[1010];
int flag[1010];		//找根结点的数组
int Set(struct bitree bt[]){
	int n;
	cin >> n;
	char a,b;
	if(n == 0)
		return -1;	
	memset(flag,0,sizeof(flag));	//初始化flag数组
		for(int j = 0;j < n;j++){
			cin >> bt[j].val;
			cin >> a >> b;
			if(a == '-'){	//子树为空,令其等于-1
				bt[j].left = -1;	
			}else{
				bt[j].left = a - '0';	//注意a是char类型,要转换为int型需要a-'0'
				flag[a-'0'] = 1;	//子树不为空,flag置为1
			}
			if(b == '-'){
				bt[j].right = -1;
			}else{
				bt[j].right = b - '0';
				flag[b-'0'] = 1;
			}
		}
	int root;
	for(int i = 0;i < n;i++){	//找到根结点
		if(flag[i] != 1){
			root = i;
		}
	}
	return root;
}
int Isomophic(int root1 , int root2){	//判断同构的函数
	if(root1 == -1 && root2 == -1)
		return 1;
	if((root1 == -1&&root2 != -1) || (root1 != -1&&root2 == -1) || bt1[root1].val != bt2[root2].val)
		return 0;
	return (Isomophic(bt1[root1].left,bt2[root2].left) && Isomophic(bt1[root1].right,bt2[root2].right)) || (Isomophic(bt1[root1].left,bt2[root2].right) && Isomophic(bt1[root1].right,bt2[root2].left));
}
int main(){
	int tree1 = Set(bt1);
	int tree2 = Set(bt2);
	int result = Isomophic(tree1,tree2);
	if(result)
		cout << "Yes" << endl;
		else
		cout << "No" << endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

China-Rookie-LSJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值