7-12 风雪火车站 (25 point(s))
B国共有 n 座城市,分别编号为 1,2,…,n。你所在地点的编号是 s ,火车站的编号是 t。
有 m 条道路连接这些城市,它们的长度分别为 w**i。为了便于绘制地图,B国的道路规划保证每条道路严格地连接两个不同的地点,并且不会有两条道路连接的两个地点相同。 你的走路速度是 1m/s。
开始时,地点 i 的积雪深度为 h**i 。每秒钟地面上积雪的厚度会增加 q 。每个地点都有一个步行的极限雪深 l**i ,如果到达此地时此地的雪深 ,你会被困在这个点,无法继续前进。
不考虑起始点和火车站的雪。你需要在g秒内到达火车站,如果能到达火车站,输出最快可以到达火车站的时间,否则输出-1
。
输入格式:
第 1 行 6 个整数,空格隔开,分别代表 n,m,s,t,g,q 。
接下来n 行,每行2 个整数,空格隔开,分别表示这个地点的 h**i 和 l**i。
接下来m 行,每行 3 个整数,空格隔开,分别表示这条路连接的两个地点u,v 和这条路的长度 w**i。
对所有的数据1≤n≤105,1≤m≤5×105
输出格式:
输出一个整数,表示最短到达火车站的时间,若无法到达,则输出-1
输入样例1:
2 1 1 2 10 1
1 10
3 10
1 2 6
输出样例1:
6
输入样例2:
5 6 2 5 10 1
1 10
1 10
1 10
1 10
1 10
1 5 9
1 3 9
2 4 1
2 5 9
3 4 1
3 5 6
输出样例2:
8
代码:
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
int n, m, s, t, G, q;
cin >> n >> m >> s >> t >> G >> q;
vector<int> h(n + 1), l(n + 1);
for (int i = 1; i <= n; i++)
cin >> h[i] >> l[i];
vector<vector<PII>> g(n + 1);
while (m--)
{
int u, v, w;
cin >> u >> v >> w;
g[v].push_back({u, w});
g[u].push_back({v, w});
}
priority_queue<PII, vector<PII>, greater<PII>> qu;
vector<int> dis(n + 1, 0x3f3f3f3f), vis(n + 1);
dis[s] = 0;
qu.push({0, s});
while (qu.size())
{
int u = qu.top().second;
qu.pop();
if (vis[u] || h[u] + q * dis[u] >= l[u]) // 积雪深度等于 h[u] + q * d[u] >= l[u],不能用来更新
continue;
vis[u] = 1;
for (int i = 0; i < g[u].size(); i++)
{
int j = g[u][i].first;
int w = g[u][i].second;
if (!vis[j] && dis[j] > dis[u] + w)
{
dis[j] = dis[u] + w;
qu.push({dis[j], j});
}
}
}
if (dis[t] > G)
cout << -1;
else
cout << dis[t];
return 0;
}