B国共有 n 座城市,分别编号为 1,2,…,n。你所在地点的编号是 s ,火车站的编号是 t。
有 m 条道路连接这些城市,它们的长度分别为
w
i
w_i
wi
。为了便于绘制地图,B国的道路规划保证每条道路严格地连接两个不同的地点,并且不会有两条道路连接的两个地点相同。 你的走路速度是 1m/s。
开始时,地点 i 的积雪深度为 h i h_i hi。每秒钟地面上积雪的厚度会增加 q 。每个地点都有一个步行的极限雪深 l i l_i li,如果到达此地时此地的雪深 ,你会被困在这个点,无法继续前进。
不考虑起始点和火车站的雪。你需要在g秒内到达火车站,如果能到达火车站,输出最快可以到达火车站的时间,否则输出-1。
输入格式:
第 1 行 6 个整数,空格隔开,分别代表 n,m,s,t,g,q 。
接下来n 行,每行2 个整数,空格隔开,分别表示这个地点的
h
i
h_i
hi和
l
i
l_i
li
。
接下来m 行,每行 3 个整数,空格隔开,分别表示这条路连接的两个地点u,v 和这条路的长度
w
i
w_i
wi 。
对所有的数据1≤n≤105,1≤m≤5×105
输出格式:
输出一个整数,表示最短到达火车站的时间,若无法到达,则输出-1
输入样例1:
2 1 1 2 10 1
1 10
3 10
1 2 6
输出样例1:
6
输入样例2:
5 6 2 5 10 1
1 10
1 10
1 10
1 10
1 10
1 5 9
1 3 9
2 4 1
2 5 9
3 4 1
3 5 6
输出样例2:
8
代码
#include<bits/stdc++.h>
#define x first
#define y second
using namespace std;
const int N=5e5+5,INF=2e9;
int n,m,s,t,G,q;
typedef pair<int,int> PII;
int visit[N];
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>m>>s>>t>>G>>q;
vector<int> h(n+1),l(n+1);
vector<PII> g[n+1];//下标 花费
for(int i=1;i<=n;i++) cin>>h[i]>>l[i];
for(int i=0;i<m;i++){
int a,b,c;
cin>>a>>b>>c;
g[a].push_back({b,c});
g[b].push_back({a,c});
}
priority_queue<PII> pq;//小顶堆
vector<int> d(n+1,2e9);
pq.push({0,s});
d[s]=0;
while(pq.size()){
int start=(pq.top()).y;
pq.pop();
if(visit[start]||h[start]+q*d[start]>=l[start]) continue;
visit[start]=1;
for(int i=0;i<g[start].size();i++){
int u=g[start][i].x,w=g[start][i].y;
if(d[u]>d[start]+w){
d[u]=d[start]+w;
pq.push({-d[u],u});
}
}
}
if(d[t]<G) cout<<d[t]<<endl;
else cout<<-1<<endl;
return 0;
}