给定一张无向图,求图中一个至少包含 3 个点的环,环上的节点不重复,并且环上的边的长度之和最小。
该问题称为无向图的最小环问题。
你需要输出最小环的方案,若最小环不唯一,输出任意一个均可。
输入格式
第一行包含两个整数 N 和 M,表示无向图有 N 个点,M 条边。
接下来 M 行,每行包含三个整数 u,v,l,表示点 u 和点 v 之间有一条边,边长为 ll。
输出格式
输出占一行,包含最小环的所有节点(按顺序输出),如果不存在则输出 No solution.
。
数据范围
1≤N≤100,
1≤M≤10000,
1≤l<500
输入样例:
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
输出样例:
1 3 5 2
代码:
/*
1.本题的思路就是考虑最小环里面节点编号最大的节点为k,且环里面与k相连的两个点为i,j,环的长度为g[i][k]+g[k][j]+d[j][i];🐱🏍
2.则d[j][i]则表示j到i且经过的节点编号小于k,因为在环中k就是最大的👍,只能经过小于k的节点了;
3.则这与floyd中k次循环开始前的d[i][j]意义相同;
*/
#include <bits/stdc++.h>
using namespace std;
const int N = 110, INF = 0x3f3f3f3f;
int g[N][N], dist[N][N];
int pos[N][N];
vector<int> path;
int n, m;
void get_path(int x, int y)// 中序遍历 floyd求路径
{
int mid = pos[x][y];
if (mid == 0)
return;
get_path(x, mid);
path.push_back(mid);
get_path(mid, y);
}
int main()
{
cin >> n >> m;
memset(g, 0x3f, sizeof(g));
for (int i = 1; i <= m; i++)
{
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
memcpy(dist, g, sizeof(dist));
int res = 0x3f3f3f3f;
for (int k = 1; k <= n; k++)
{
for (int i = 1; i < k; i++)// 只经过1 ~ k-1 的缩短路径
{
for (int j = i + 1; j < k; j++)
{
if (dist[i][j] != INF && g[i][k] != INF && g[k][j] != INF) // 防止三个INF相加越界int
if (dist[i][j] + g[i][k] + g[k][j] < res)
{
res = dist[i][j] + g[i][k] + g[k][j];
path.clear();
path.push_back(k);
path.push_back(i);
get_path(i, j);
path.push_back(j);
}
}
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
if (dist[i][j] > dist[i][k] + dist[k][j])
{
dist[i][j] = dist[i][k] + dist[k][j];
pos[i][j] = k;
}
}
}
}
if (res == 0x3f3f3f3f)
cout << "No solution." << endl;
else
{
for (int i = 0; i < path.size(); i++)
{
cout << path[i] << " ";
}
}
return 0;
}