344. 观光之旅

给定一张无向图,求图中一个至少包含 3 个点的环,环上的节点不重复,并且环上的边的长度之和最小。

该问题称为无向图的最小环问题。

你需要输出最小环的方案,若最小环不唯一,输出任意一个均可。

输入格式

第一行包含两个整数 N 和 M,表示无向图有 N 个点,M 条边。

接下来 M 行,每行包含三个整数 u,v,l,表示点 u 和点 v 之间有一条边,边长为 ll。

输出格式

输出占一行,包含最小环的所有节点(按顺序输出),如果不存在则输出 No solution.

数据范围

1≤N≤100,
1≤M≤10000,
1≤l<500

输入样例:
5 7
1 4 1
1 3 300
3 1 10
1 2 16
2 3 100
2 5 15
5 3 20
输出样例:
1 3 5 2
代码:
/*
1.本题的思路就是考虑最小环里面节点编号最大的节点为k,且环里面与k相连的两个点为i,j,环的长度为g[i][k]+g[k][j]+d[j][i];🐱‍🏍

2.则d[j][i]则表示j到i且经过的节点编号小于k,因为在环中k就是最大的👍,只能经过小于k的节点了;

3.则这与floyd中k次循环开始前的d[i][j]意义相同;
*/
#include <bits/stdc++.h>
using namespace std;

const int N = 110, INF = 0x3f3f3f3f;
int g[N][N], dist[N][N];
int pos[N][N];
vector<int> path;
int n, m;

void get_path(int x, int y)// 中序遍历 floyd求路径
{
    int mid = pos[x][y];
    if (mid == 0)
        return;
    get_path(x, mid);
    path.push_back(mid);
    get_path(mid, y);
}

int main()
{
    cin >> n >> m;
    memset(g, 0x3f, sizeof(g));
    for (int i = 1; i <= m; i++)
    {
        int a, b, c;
        cin >> a >> b >> c;
        g[a][b] = g[b][a] = min(g[a][b], c);
    }

    memcpy(dist, g, sizeof(dist));
    int res = 0x3f3f3f3f;
    for (int k = 1; k <= n; k++)
    {
        for (int i = 1; i < k; i++)// 只经过1 ~ k-1 的缩短路径
        {
            for (int j = i + 1; j < k; j++)
            {
                if (dist[i][j] != INF && g[i][k] != INF && g[k][j] != INF) // 防止三个INF相加越界int
                    if (dist[i][j] + g[i][k] + g[k][j] < res)
                    {
                        res = dist[i][j] + g[i][k] + g[k][j];
                        path.clear();
                        path.push_back(k);
                        path.push_back(i);
                        get_path(i, j);
                        path.push_back(j);
                    }
            }
        }

        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                if (dist[i][j] > dist[i][k] + dist[k][j])
                {
                    dist[i][j] = dist[i][k] + dist[k][j];
                    pos[i][j] = k;
                }
            }
        }
    }
    if (res == 0x3f3f3f3f)
        cout << "No solution." << endl;
    else
    {
        for (int i = 0; i < path.size(); i++)
        {
            cout << path[i] << " ";
        }
    }

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值