361. 观光奶牛

给定一张 L 个点、P 条边的有向图,每个点都有一个权f[i],每条边都有一个权值 t[i]。

求图中的一个环,使“环上各点的权值之和”除以“环上各边的权值之和”最大。

输出这个最大值。

注意:数据保证至少存在一个环。

输入格式

第一行包含两个整数 L 和 P。

接下来 L 行每行一个整数,表示f[i]。

再接下来 P 行,每行三个整数 a,b,t[i],表示点 a 和 b 之间存在一条边,边的权值为 t[i]。

输出格式

输出一个数表示结果,保留两位小数。

数据范围

2≤L≤1000,
2≤P≤5000,
1≤f[i],t[i]≤1000

输入样例:
5 7
30
10
10
5
10
1 2 3
2 3 2
3 4 5
3 5 2
4 5 5
5 1 3
5 2 2
输出样例:
6.00
01分数规划问题:

步骤:

  1. 确认答案区间,然后二分,判断性质
  2. 借助上述二分出的中点,推导出性质的公式
  3. 套用图论模板算法
思路:
/*
本题首先我们要求的是在一个环内 ∑f(i)/∑t(i) 的最大值
这个答案本身具有二分的性质【存在标准大于等于k的环 | 不存在】,我们就是要二分到他的最大值
根据数据范围可以推断出答案是在 [1,1000] 上的浮点数二分问题
利用二分出的mid,我们有公式 ∑f(i)/∑t(i)>mid,对公式进行变形
根据上述推导的公式,我们可知,满足要求mid,就是要满足图中存在一个环,他的 ∑(f(i)−t(i)⋅mid)>0
*/

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-z0GpflpY-1651625399854)(361.%20%E8%A7%82%E5%85%89%E5%A5%B6%E7%89%9B.assets/55909_6ffda44f76-QQ%E6%88%AA%E5%9B%BE20210224194951.png)]

spfa算法本身具有一个性质,就是在求解最短路的时候,是可以把点权和边权看做一个整体边权(出边或者入边)一起更新的,因此我们常常在一些spfa的图论问题中,把点权存入边权中进行计算。

/*
这题我们就要利用到spfa的性质,把边权 t(i) 换成 f(i)−t(i)⋅mid 来存储,把每个点的权值存入他的出边中
这样,原问题就转换成了求一个图中是否存在一个正环的问题了
*/

求图中是否存在正环,和求负环是一个对称问题,直接更改spfa算法中的不等号方向,转而变成求最长路算法中是否存在正环,即可办到

代码:
#include <bits/stdc++.h>
using namespace std;
const int N = 1e3 + 10, M = 5010;
int h[N], e[M], ne[M], w[M], idx;
int st[N], cnt[N], v[N];
double dist[N];
int n, m;
double res;
void add(int a, int b, int c)
{
    e[idx] = b;
    w[idx] = c;
    ne[idx] = h[a];
    h[a] = idx++;
}

// 是否存在正环
bool check(double mid)
{
    memset(dist, 0, sizeof(dist));
    memset(st, 0, sizeof(st));
    memset(cnt, 0, sizeof(cnt));

    queue<int> qu;
    for (int i = 1; i <= n; i++)
    {
        qu.push(i);
        st[i] = 1;
    }

    while (qu.size())
    {
        int t = qu.front();
        qu.pop();
        st[t] = 0;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] < dist[t] + v[t] - mid * w[i]) // 求最长路
            {
                dist[j] = dist[t] + v[t] - mid * w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n)
                    return 1;
                if (!st[j])
                {
                    st[j] = 1;
                    qu.push(j);
                }
            }
        }
    }
    return 0;
}

int main()
{
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
        cin >> v[i];
    memset(h, -1, sizeof(h));
    while (m--)
    {
        int a, b, c;
        cin >> a >> b >> c;
        add(a, b, c);
    }

    double l = 0, r = 1000;
    while (r - l > 1e-4)
    {
        double mid = (l + r) / 2;
        if (check(mid))
            l = mid;
        else
            r = mid;
    }

    printf("%.2lf\n", l);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值