Flink批处理调优指南

本文为您介绍Flink批处理的一些基本原理和配置调优。

背景信息

作为支持流处理和批处理的统一计算框架,Flink能够同时处理两种不同的数据模式。尽管Flink在流处理和批处理模式下共享许多核心执行机制,但两种模式在作业执行机制、配置参数和性能调优方面存在一些关键差异。本文将专门针对Flink批处理作业,为您介绍其独特的执行机制、配置参数。通过深入理解这些差异,您将能够更加高效地对作业进行调优,以及排查和解决在使用Flink批处理作业中遇到的问题。

说明

实时计算Flink版也对Flink批处理进行了专门的支持,提供了作业开发、作业运维、作业编排、资源队列管理、数据结果探查等能力,您可以通过Flink批处理快速入门快速地了解上手。

批作业和流作业的比较

在介绍Flink批处理作业的配置参数和调优方法之前,首先需要了解Flink批处理与流处理作业在执行机制上的差异。

执行模式

  • 流处理作业:流处理模式专注于处理持续不断的无界数据流,其核心在于实现低延迟的数据处理。在这种模式下,数据会以流水线模式在节点间即时传递并被处理。因此,流处理作业所有节点的子任务会同时部署和执行。

image.png

  • 批处理作业:批处理模式专注于处理有界数据集,重点在于提供高吞吐量的数据处理。在这种执行模式下,作业通常由多个阶段组成,互不依赖的阶段可以并行执行,以提高资源利用率;对于存在数据依赖的阶段,下游任务需等待上游任务完成后才能启动。

image.png

数据传输

  • 流处理作业:为了实现低延迟,流处理作业的中间数据保留在内存中并直接通过网络进行传输,不会持久化。如果下游节点处理能力不足,则可能会导致上游节点遭遇反压。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

soso1968

你的鼓励是我继续创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值