文献回顾
senbinyu
这个作者很懒,什么都没留下…
展开
-
图像分割中的损失函数分类和汇总
损失函数是最优化目标的一种代表,大多数情况下,我们无法直接用最优化目标,故用损失函数来替代。因此,如何选择一个损失函数,以让他和最优化目标更为接近显得极为重要。更多文献综述及文献回顾,请参阅:https://github.com/senbinyu/Computer_Vision_Literatures1. Review paper,综述文献推荐Ma et al., 2020, Nanjing University of Science and Technology, Segmentation Los原创 2020-08-26 01:42:07 · 6071 阅读 · 0 评论 -
模型压缩和加速方法总结和文献综述
本文集中了一些针对模型压缩和技巧,用于加快计算速度的论文。 如下所示,模型压缩具有不同的技术,在这里我将主要列出深度学习网络部分。1. Review papers,综述文章以下是推荐用于模型压缩和加速的几篇论文。Cheng Yu et al., A survey of model compression and acceleration for deep neural networks, 2017.Cheng Jian et al., Recent advances in efficie原创 2020-08-21 02:07:04 · 3738 阅读 · 0 评论 -
轻量化神经网络专题文献综述
本文列出了一些经典的轻型神经网络架构设计的集合,广泛用于移动设备等。轻量级网络的评论文章通常包含模型压缩和处理技巧,可参阅以下系列文章https://github.com/senbinyu/Computer_Vision_Literatures1. 综述文献推荐Cheng Yu et al., 2017, A survey of model compression and acceleration for deep neural networksCheng Jian et al., 2018原创 2020-08-17 01:09:19 · 4740 阅读 · 0 评论 -
机器视觉图像分割文献综述
本文罗列了 and state-of-art papers working on image segmentation by using deep learning.1. Review papersGuo et al., Leiden University, 2018, A review of semantic segmentation using deep neural networksRecommand Minaee et al., Snapchat Inc, 2020.01, Image Seg原创 2020-08-16 03:56:50 · 1824 阅读 · 0 评论 -
机器视觉目标检测文献回顾及综述
为读者正确理解意思,目录用英文表示,正文为中文。更多的关于计算机视觉的综述可查阅https://github.com/senbinyu/Computer_Vision_Literatures目录表1. Review papers2. Detection paradigms2.1 Two-stage detectors2.2 One-stage detectors3. Feature representing (feature extraction and fusion)3.1 mul原创 2020-08-15 05:24:52 · 1560 阅读 · 0 评论 -
神经网络骨架network backbones
本文将列出神经网络几种骨架结构的历史沿袭,对从框架上了解backbones有重要帮助。阅读时间约10分钟。更多的机器视觉文献回顾可参阅:https://github.com/senbinyu/Computer_Vision_Literaturesnetwork backbones是神经网络最重要的体系结构。1. Review papers以下列出一些综述文章,推荐阅读第二篇Neena Aloysius and Geetha M, A Review on Deep Convolutional Ne原创 2020-08-14 04:38:54 · 3425 阅读 · 0 评论