使用 TensorFlow 的卷积神经网络 - 神经网络深度学习 13

卷积神经网络教程摘要

这段文字描述了使用 TensorFlow 建立卷积神经网络 (CNN) 的教程步骤。教程以一个基础的多层感知器 (MLP) 代码为基础,并将其改造为 CNN。

主要步骤如下:

  1. 获取基础代码: 从 PythonProgram.net 网站获取 MLP 代码,并将其复制到新的文件。
  2. 修改代码:
  • 移除一些不再使用的变量。
  • 将隐藏层神经元数量改为 128。
  • 将模型函数改为使用权重字典 (weights) 和偏置字典 (biases)。
  • 将模型函数命名为 convolutional_neural_network,并使用 x 作为输入参数。
  1. 创建权重和偏置字典:
  • 首先创建 w_conv1,用于第一层的卷积操作。
  • 遵循 DeepMNIST for Experts 教程的命名规范,并使用字典来存储权重和偏置。
  1. 解释代码:
  • 教程解释了代码的结构和参数选择,并鼓励读者参考 DeepMNIST for Experts 教程了解更多信息。
  • 同时也鼓励读者在遇到问题时提出问题。

总结:

这段文字提供了使用 TensorFlow 建立 CNN 的教程概述,并详细介绍了代码修改步骤和变量命名规范。教程鼓励读者参考其他资源,并积极提出问题。

在本教程中,我们将介绍如何在 TensorFlow 中使用多层感知器模型创建卷积神经网络 (CNN) 模型:https://pythonprogramming.net/tensorflow-neural-network-session-machine-learning-tutorial/专家级深度 MNIST:https://www.tensorflow.org/versions/r0.10/tutorials/mnist/pros/index.htmlhttps://pythonprogramming.net

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sentdex

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值