卷积神经网络教程摘要
这段文字描述了使用 TensorFlow 建立卷积神经网络 (CNN) 的教程步骤。教程以一个基础的多层感知器 (MLP) 代码为基础,并将其改造为 CNN。
主要步骤如下:
- 获取基础代码: 从 PythonProgram.net 网站获取 MLP 代码,并将其复制到新的文件。
- 修改代码:
- 移除一些不再使用的变量。
- 将隐藏层神经元数量改为 128。
- 将模型函数改为使用权重字典 (weights) 和偏置字典 (biases)。
- 将模型函数命名为
convolutional_neural_network
,并使用x
作为输入参数。
- 创建权重和偏置字典:
- 首先创建
w_conv1
,用于第一层的卷积操作。 - 遵循 DeepMNIST for Experts 教程的命名规范,并使用字典来存储权重和偏置。
- 解释代码:
- 教程解释了代码的结构和参数选择,并鼓励读者参考 DeepMNIST for Experts 教程了解更多信息。
- 同时也鼓励读者在遇到问题时提出问题。
总结:
这段文字提供了使用 TensorFlow 建立 CNN 的教程概述,并详细介绍了代码修改步骤和变量命名规范。教程鼓励读者参考其他资源,并积极提出问题。
在本教程中,我们将介绍如何在 TensorFlow 中使用多层感知器模型创建卷积神经网络 (CNN) 模型:https://pythonprogramming.net/tensorflow-neural-network-session-machine-learning-tutorial/专家级深度 MNIST:https://www.tensorflow.org/versions/r0.10/tutorials/mnist/pros/index.htmlhttps://pythonprogramming.net