dijkstra + heap 优化

本文探讨了在正边存在的图中,为何优先选择Dijkstra算法配合堆优化的原因。相较于Bellman-Ford算法,Dijkstra算法结合堆优化能更有效地找到最短路径,尤其是在存在负环的情况下。详细介绍了Dijkstra算法的基本思想、优化策略以及堆优化的实现细节,包括如何处理堆中节点的更新和避免复杂度增加的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

spfa和bellman-ford复杂度是同阶的。虽然据说spfa复杂度是O(K*E)(k为某个常数,2~3),但是最坏情况下为O(N*E),卡spfa的题目无法通过。

所以有正边的时候最好用dikstra+heap优化,并且有priority queue代码量不会很大


1.bellman-ford算法:

bellman-ford算法的核心是松弛操作:

用一个while(true)循环;不断检测对于每条边,可以不可以进行松弛操作,如果没有一条边可以进行松弛操作,则退出循环。在没有负边的时候,松弛操作一定是有限的,故最后一定会退出循环。

如果图中不存在负环,那么最短路就不会经过同一个顶点两次

代码

sturct edge{ int from,to,cost; };
edge es[maxn];
int dis[maxn];
int V,E;

void BellmanFord(int s){
	for(int i=0;i<V;i++) dis[i]=INF;
	dis[s]=0;
	while(true){
		bool update = false;
		for(int i=0;i<E;i++){
		edge cur=es[i];
		if(dis[e.from]!=INF && dis[e.to]>dis[from]+e.cost){
				dis[e.to]=dis[e.from]+e.cost;
				update=true;
			}
		}
		if(!update) break;
	}
}



<think>嗯,我现在要理解Dijkstra算法中堆(heap)的应用方式,特别是怎么用它来优化时间复杂度。首先,我记得Dijkstra算法是用于解决单源最短路径问题的,适用于带权有向图或无向图,且权重非负的情况。传统的Dijkstra算法,也就是朴素版本,时间复杂度是$O(n^2)$,对吧?这个时间复杂度主要是因为每次都要遍历所有节点来找当前距离最小的节点,对于稀疏图来说可能效率不高。 那堆优化是怎么介入的呢?堆,通常指的是优先队列,特别是最小堆,可以快速取出当前最小的元素。所以,如果用堆来维护待处理的节点,每次取距离最小的节点,这样是不是可以避免每次遍历所有节点?这样的话,时间复杂度应该会降低。根据引用[3]和[4]提到的,堆优化后的时间复杂度是$O(m \log n)$,其中m是边数,n是节点数。这应该更适合边数较少的稀疏图,因为当m远小于n²时,这个复杂度比$O(n^2)$好很多。 那具体实现步骤是怎样的呢?朴素Dijkstra的步骤大概是初始化距离数组,然后循环n次,每次找到未访问的距离最小的节点u,标记为已访问,然后遍历u的所有邻居v,更新距离。而堆优化的版本应该用优先队列来存储节点和当前的最短距离,每次从堆顶取出距离最小的节点u,如果u已经被处理过,就跳过,否则标记为已处理,然后遍历u的邻居v,进行松弛操作,如果找到更短的路径,就将v和新的距离加入堆中。 不过,这里可能会有疑问,比如堆中可能有同一个节点的多个不同距离的条目。比如当某个节点v已经被处理过一次,但后来又有更短的路径到达它,这时候堆中可能还存在旧的较大的距离条目。这时候,当取出旧的较大距离的条目时,由于节点v已经被标记为已处理,就可以直接跳过,这样可以避免重复处理。因此,堆的大小可能达到m的数量级,但因为每次操作是O(log m)或O(log n),所以总的时间复杂度是O(m log n)。 另外,引用[3]提到使用邻接表存储图,这样可以更高效地遍历每个节点的邻居,而邻接矩阵则适合稠密图。堆优化后的Dijkstra适合稀疏图,因为邻接表的遍历更高效,而堆操作的时间复杂度更低。 还需要注意,堆优化的实现通常需要一个优先队列数据结构,Python中可以用heapq模块来实现最小堆。不过,由于heapq不支持直接更新堆中的元素值,所以当某个节点的距离被更新时,只能将新的距离插入堆中,而旧的条目仍然存在,但会被标记为已处理从而被忽略。这可能导致堆中有多个同一节点的条目,但不会影响结果的正确性,只是稍微增加了堆的大小和操作次数。 总结一下,堆在Dijkstra算法中的应用主要是优化选择当前最小距离节点的过程,将时间复杂度从$O(n^2)$降低到$O(m \log n)$,尤其适合边数较少的稀疏图。实现时使用优先队列(堆)来维护待处理的节点,每次取出距离最小的节点进行处理,并更新其邻居的距离,将新的距离插入堆中。同时需要注意处理堆中可能存在的重复节点条目,通过标记已处理节点来跳过无效的条目。</think>### Dijkstra算法中堆(heap)的优化实现方式 Dijkstra算法通过**优先队列(堆)**优化后,时间复杂度可从$O(n^2)$降低至$O(m \log n)$,尤其适合稀疏图[^3][^4]。以下是具体实现方式: --- #### **1. 堆的作用** - **传统问题**:朴素Dijkstra每次需遍历所有节点寻找当前最小距离节点,时间复杂度$O(n^2)$。 - **堆的优化**:用最小堆(优先队列)动态维护未处理的节点及其距离,直接取堆顶元素(当前最小距离节点),将查找时间从$O(n)$降至$O(\log n)$。 --- #### **2. 实现步骤** 1. **初始化**: - 距离数组`dist[]`:`dist[起点] = 0`,其余初始化为无穷大。 - 优先队列:初始存入起点及其距离`(0, 起点)`。 2. **循环处理堆顶节点**: - **弹出堆顶**:取出当前距离最小的节点`u`。 - **跳过已处理节点**:若`u`已被标记为已处理,则跳过。 - **遍历邻居**:对`u`的每个邻居`v`,尝试松弛边: $$ \text{if } dist[v] > dist[u] + w(u, v), \text{ 则更新 } dist[v] $$ - **入堆**:若松弛成功,将`(新距离, v)`入堆。 3. **终止条件**:堆为空时结束。 --- #### **3. Python代码示例** ```python import heapq def dijkstra_heap(graph, start): n = len(graph) dist = [float('inf')] * n dist[start] = 0 heap = [] heapq.heappush(heap, (0, start)) visited = [False] * n # 标记是否已处理 while heap: current_dist, u = heapq.heappop(heap) if visited[u]: continue visited[u] = True for v, weight in graph[u]: if dist[v] > current_dist + weight: dist[v] = current_dist + weight heapq.heappush(heap, (dist[v], v)) return dist ``` --- #### **4. 时间复杂度分析** - **堆操作**:每次插入/弹出堆的时间为$O(\log n)$。 - **总时间复杂度**:最坏情况下每条边触发一次入堆操作,总时间复杂度为$O(m \log n)$[^4]。 --- #### **5. 注意事项** - **重复入堆**:同一节点可能多次入堆(因距离被多次更新),但只有最小距离的条目会生效,其余被跳过。 - **稀疏图优势**:当边数$m \ll n^2$时,堆优化显著优于朴素实现。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值