stanford machine learning, linear regression

9:38 2014-10-12
start stanford openclassroom, machine learning


video I


9:38 2014-10-12
T == Target,


P == Performance,


E == Experience


10:13 2014-10-12
supervised learning, unsupervised learning


10:15 2014-10-12
How to use these machine learning tools in practice?


10:16 2014-10-12
supervised learning introduction


10:18 2014-10-12
supervised learning: "right answer" given


10:21 2014-10-12
supervisde learning: house pricing


unsupervised learning: 


10:26 2014-10-12
this is a "classification problem", in constrast to 


"regression problem"


10:27 2014-10-12
feature extraction


10:29 2014-10-12
(age, tumor size) 


// example of unsupervised learning, "tumor classification"


10:29 2014-10-12
infinite number of tumors, so that your learning 


algorithm has a lot of features, lot of attribute,


10:31 2014-10-12
how do you deal with infinite number of features?


10:32 2014-10-12
SVM == Support Vector Machine


10:32 2014-10-12
regression problem // prediction


classification problem


10:35 2014-10-12
unsupervised learning: clustering algorithm


10:38 2014-10-12
google news: example of "clustering algorithm"


10:39 2014-10-12
what clustering algorithm do is to group different


individuals to different clusters.


10:40 2014-10-12
market segmentation // "clustering algorithm"


10:41 2014-10-12
cocktail party problem


10:44 2014-10-12
to separate these 2 audio sources


10:45 2014-10-12
prototype using matlab, then go to c++ or Java...


10:52 2014-10-12
prototyping language: matlab


10:53 2014-10-12
supervised learning: with tag


unsupervised learning: without tag


----------------------------------------------------


/
14:34 2014-10-13
supervised learning,


14:34 2014-10-13
the linear regression model


15:01 2014-10-13
training set, training example


15:05 2014-10-13
cost function


18:15 2014-10-13
I'm going to minimize this cost function


18:15 2014-10-13
least square cost function


18:16 2014-10-13
How to minimize this cost function J(θ)?


using "gradient descent"


18:25 2014-10-13
α, the learning rate controls the step size


18:48 2014-10-13
the significance of α:


* if α too small, gradient descent can be slow


* if α too large, can overshoot minimum, gradient 


  descent can diverge


18:52 2014-10-13
Batch Gradient Descent


19:39 2014-10-13
vectorized implementation


19:44 2014-10-13
using "vectorized implementation" to replace loop


19:48 2014-10-13
what is the y = kx + b in linear regression ??? // least square


it's essentially a "hypothesis": h(x)


///
8:23 2014-10-14 Tuesday
feature scaling


8:24 2014-10-14
make sure features are on similar scale


8:27 2014-10-14
learning rate: how to make sure gradient descent


               work properly


8:46 2014-10-14
make sure J(θ) decrease on every iteration?


8:50 2014-10-14
automatic convergence test


8:56 2014-10-14
try a bunch of different learning rate(α)?


9:10 2014-10-14
polynomial regression


9:40 2014-10-14
normal equations


10:03 2014-10-14
redundant features(linear dependent features)


------------------------------------------------------
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Programming Exercise 1: Linear Regression Machine Learning Introduction In this exercise, you will implement linear regression and get to see it work on data. Before starting on this programming exercise, we strongly recom- mend watching the video lectures and completing the review questions for the associated topics. To get started with the exercise, you will need to download the starter code and unzip its contents to the directory where you wish to complete the exercise. If needed, use the cd command in Octave/MATLAB to change to this directory before starting this exercise. You can also find instructions for installing Octave/MATLAB in the “En- vironment Setup Instructions” of the course website. Files included in this exercise ex1.m - Octave/MATLAB script that steps you through the exercise ex1 multi.m - Octave/MATLAB script for the later parts of the exercise ex1data1.txt - Dataset for linear regression with one variable ex1data2.txt - Dataset for linear regression with multiple variables submit.m - Submission script that sends your solutions to our servers [?] warmUpExercise.m - Simple example function in Octave/MATLAB [?] plotData.m - Function to display the dataset [?] computeCost.m - Function to compute the cost of linear regression [?] gradientDescent.m - Function to run gradient descent [†] computeCostMulti.m - Cost function for multiple variables [†] gradientDescentMulti.m - Gradient descent for multiple variables [†] featureNormalize.m - Function to normalize features [†] normalEqn.m - Function to compute the normal equations ? indicates files you will need to complete † indicates optional exercises

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值