Google推出了牛逼的Python在线编辑器,以后协同项目代码就省心了

Google的Colab是一个强大的Python在线编辑器,解决了环境配置难题,提供云端notebook,支持代码分享、团队成员评论、Stack Overflow链接、GitHub备份以及免费的GPU/TPU资源。现在,协同项目代码变得更加便捷。
摘要由CSDN通过智能技术生成

Google推出了牛逼的Python在线编辑器,以后协同项目代码就省心了,环境配置对于大多数人来说都是拦路虎,我们小白往往不知道:

  • 怎么正确的安装
  • 不知道选择什么
  • 怎么安装常用的第三方库
  • 。。。

Google推出了一个在线的网站 https://colab.research.google.com ,这些问题现在已经不是问题了。而且Colab还有更多新奇的功能,绝对亮瞎我们的眼睛。下面跟着小编一起去看看吧

一、新建云端notebook

打开 https://colab.research.google.com 网站,我们就能看到浏览器中出现了新建python notebook

Python在线编辑器
Python在线编辑器

二、分享代码

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是一个简单的基于协同过滤的课程推荐项目Python 代码: ```python import numpy as np import pandas as pd # 加载用户评分数据 ratings_data = pd.read_csv('ratings.csv') # 创建用户评分矩阵 ratings_matrix = ratings_data.pivot_table(index='user_id', columns='course_id', values='rating') # 计算每个课程之间的相似度 course_similarity_matrix = ratings_matrix.corr(method='pearson') # 定义函数,根据用户历史评分推荐课程 def recommend_courses(user_id, num_recommendations=5): # 获取用户历史评分 user_ratings = ratings_matrix.loc[user_id].dropna() # 获取用户历史评分最高的课程 top_rated_courses = user_ratings.sort_values(ascending=False)[:num_recommendations] # 遍历每个历史评分最高的课程,计算与之相似的其他课程 recommended_courses = [] for course_id, rating in top_rated_courses.iteritems(): similar_courses = course_similarity_matrix[course_id].dropna() similar_courses = similar_courses.map(lambda x: x * rating) recommended_courses = recommended_courses + list(similar_courses.sort_values(ascending=False).index)[:num_recommendations] # 返回推荐的课程 return list(set(recommended_courses)) # 测试推荐函数 recommended_courses = recommend_courses(1) print(recommended_courses) ``` 这段代码假设评分数据已经存储在名为 `ratings.csv` 的文件中,其中包含用户 ID、课程 ID 和评分。代码首先将评分数据加载到 Pandas 数据框中,然后使用 `pivot_table` 函数创建用户评分矩阵。接下来,使用 `corr` 函数计算每个课程之间的相似度,并将结果存储在一个相似度矩阵中。最后,定义了一个名为 `recommend_courses` 的函数,该函数接受一个用户 ID 和一个要推荐的课程数量,并返回推荐的课程列表。函数的实现基于协同过滤算法,它首先获取用户历史评分最高的课程,然后计算与这些课程相似的其他课程,并将它们添加到推荐列表中。 这只是一个简单的示例,实际的协同过滤推荐系统可能需要更复杂的算法和数据处理步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值