poj 3279 Fliptile 枚举子集

题意:

给一个01矩阵,求它经过最少多少次翻转能得到全0矩阵,翻转(i,j)后(i,j)四周的点也会被翻转。

分析:

因为第一行的翻转情况确定后为达到目标矩阵之后各行的翻转情况就确定了,所以枚举第一行的m个点的所有子集进行翻转,求可以达到目标矩阵的最小翻转数。

代码:

//poj 3279
//sepNINE
#include <iostream>
using namespace std;
int mat[32][32];
int c[32][32],record[32][32],ansMat[32][32];
int m,n,ans;
void change(int i,int j){
	c[i][j]=1-c[i][j];
	if(i-1>=0)
		c[i-1][j]=1-c[i-1][j];
	if(i+1<m)
		c[i+1][j]=1-c[i+1][j];
	if(j-1>=0)
		c[i][j-1]=1-c[i][j-1];
	if(j+1<n)
		c[i][j+1]=1-c[i][j+1]; 
}

int flip(int s)
{
	int i,j,tot=0;
	memset(c,0,sizeof(c));
	memset(record,0,sizeof(record));
	for(i=n-1;i>=0;--i){
		int x=s&1;
		s=s/2;
		if(x==1){
			change(0,i);	
			record[0][i]=1;
			++tot;
		}
	}
	for(i=1;i<m;++i)
		for(j=0;j<n;++j)
			if(c[i-1][j]!=mat[i-1][j]){
				change(i,j);
				record[i][j]=1;
				++tot;
			}
	for(j=0;j<n;++j)
		if(c[m-1][j]!=mat[m-1][j])
			return -1;
	if(tot<ans){
		ans=tot;
		for(i=0;i<m;++i)
			for(j=0;j<n;++j)
				ansMat[i][j]=record[i][j];
	}		
	return 1;
}
int main()
{
	scanf("%d%d",&m,&n);
	int i,j;
	for(i=0;i<m;++i)
		for(j=0;j<n;++j)
			scanf("%d",&mat[i][j]);
	ans=INT_MAX;
	int flag=0;
	for(i=0;i<(1<<n);++i)
		if(flip(i)==1)
			flag=1;
	if(flag==0)
		printf("IMPOSSIBLE\n");	
	else
		for(i=0;i<m;++i){
			for(j=0;j<n;++j)
				printf("%d ",ansMat[i][j]);	
			printf("\n");
		}		
	return 0;	
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值