题目的链接:Problem - C - Codeforces
题意:
多组数据t(1<=t<=1e4);
给定一棵节点数为n(3<=n<=1e5)的树,删掉一条边然后加上一条边,使得最终该树的重心唯一。
(删掉的边和加上的边可以是同一条)。输出被删掉的边和加上的边。
思路:
树的重心 - OI Wiki (oi-wiki.org)(oi里面的关于树的重心的解释)
其中关于树的重心比较重要的性质是:
1.以树的重心为根时,所有子树的大小都不超过整棵树树大小的一半。
2.一棵树最多有两个重心,且相邻。
所以如果只找到一个重心的话,直接删除一个重心的直连边然后再加回去就好了。
如果找到两个重心,那么在其中一个重心上找到一条直连点(而不是另一个重心),删除与该重心的连线,连另外一个重心就好了。
关于求树的重心:
先选1结点作为根结点,把无根树变成有根树。然后设siz[i]表示以i为根节点的子树节点个数。
son[i]表示删去节点x后剩下的连通分量中最大子树节点个数。然后进行层层递进,最后得到最终的重心。
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
const int ma = 1e5 + 10;
vector<int>g[ma];
int siz[ma], son[ma];
int r1, r2, n;
void dfs(int u, int fa)
{
siz[u] = 1;
son[u] = 0;
for (int i = 0; i < g[u].size(); i++)
{
int v = g[u][i];
if (v == fa)//判断v是否是父节点,如果是就继续循环。
{
continue;
}
dfs(v, u);
siz[u] += siz[v];
son[u] = max(son[u], siz[v]);
}
son[u] = max(son[u],n-siz[u]);
if ((son[u] * 2) <= n)
{
r2 = r1;
r1 = u;
}
}
int main()
{
int t;
cin >> t;
while (t--)
{
cin >> n;
for (int i = 0; i <= n+10; i++)
{
g[i].clear();
siz[i] = 0;
son[i] = 0;
}
for (int i = 1; i < n; i++)
{
int x, y;
cin >> x >> y;
g[x].push_back(y);
g[y].push_back(x);//建树
}
r1 = r2 = 0;
dfs(1, 0);
int r3;
if (!r2)//如果r2等于零说明只有一个重心
{
r3 = g[r1][0];
cout << r1 << " " << r3 << endl;
cout << r1 << " " << r3 << endl;
}
else
{
r3 = r1;
for (int i = 0; i < g[r2].size(); i++)
{
r3 = g[r2][i];
if (r3 != r1)
break;
}
cout << r3 << " " << r2 << endl;
cout << r3 << " " << r1 << endl;
}
}
return 0;
}