题目描述
1920年的芝加哥,出现了一群强盗。如果两个强盗遇上了,那么他们要么是朋友,要么是敌人。而且有一点是肯定的,就是:
我朋友的朋友是我的朋友;
我敌人的敌人也是我的朋友。
两个强盗是同一团伙的条件是当且仅当他们是朋友。现在给你一些关于强盗们的信息,问你最多有多少个强盗团伙。
输入格式:
输入文件gangs.in的第一行是一个整数N(2<=N<=1000),表示强盗的个数(从1编号到N)。
第二行M(1<=M<=5000),表示关于强盗的信息条数。 以下M行,每行可能是F p q或是E p q(1<=p q<=N),F表示p和q是朋友,E表示p和q是敌人。输入数据保证不会产生信息的矛盾。
输出格式:
输出文件gangs.out只有一行,表示最大可能的团伙数。
输入样例
6
4
E 1 4
F 3 5
F 4 6
E 1 2
输出样例
3
思路:
代码中的g数组就是记录了每个人的第一个敌人,再遇到敌人时就把这两个敌人合并。
代码:
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1010;
char c;
int a,b,n,m,ans;
int t[N],g[N][N];
int find(int x) {
if(t[x]==0)
return x;
else
return t[x]=find(t[x]);
}
void fx(int a,int b) {
int x,y;
x=find(a);
y=find(b);
if(x!=y)
t[x]=y;
}
int main() {
scanf("%d\n%d",&n,&m);
ans=0;
for(int i=1; i<=m; i++) {
cin>>c;
scanf("%d%d",&a,&b);
if(c=='F')
fx(a,b);
else {
g[a][b]=1;
g[b][a]=1;
for(int i=1; i<=n; i++) {
if(g[a][i])
fx(b,i);
if(g[b][i])
fx(a,i);
}
}
}
for(int i=1; i<=n; i++)
if(t[i]==0)
ans++;
printf("%d\n",ans);
return 0;
}