题目描述
有一个无限大的棋盘,棋盘左下角有一个大小为 n 的阶梯形区域,其中最左下角的那个格子里有一枚棋子。你每次可以把一枚棋子“分裂”成两枚棋子,分别放在原位置的上边一格和右边一格。(但如果目标位置已有棋子,则不能这样做)你的目的是通过有限次的操作,让整个阶梯里不再有任何棋子。下图所示的是 n = 2 时的一种解法。
我们用从下往上数的方式标记行,从左往右数的方式标记列,以(行,列)来标记棋子,并且都从1开始。
例如,第三步中的三个棋子坐标分别为(3,1),(2,2),(1,2)
现在已知n,你需要做的是给出合适的操作序列。
输入格式
输入只有一行,这一行只包含一个正整数n,其意义如题目所述。
输出格式
如果有解,第一行应包含一个正整数m,表示总共需要的操作步数。
以下m行,每行包括两个正整数xi,yi,表示第i步操作分裂的是处于第xi行第yi列的棋子。
如果无解,只需在第一行输出-1。
输入输出样例
输入 #1 复制
输入样例1
1
输入样例2
2
输出 #1 复制
输出样例1
1
1 1
输出样例2
4
1 1
2 1
2 2
1 2
说明/提示
↖(ω)↗加油!
对于40%的数据:N≤8;
对于100%的数据:N≤1000。
#include<iostream>
using namespace std;
int n;
int main() {
cin>>n;
if(n==1) {
cout<<1<<endl;
cout<<1<<" "<<1<<endl;
}
else if(n==2) {
cout<<4<<endl;
cout<<1<<" "<<1<<endl;
cout<<2<<" "<<1<<endl;
cout<<2<<" "<<2<<endl;
cout<<1<<" "<<2<<endl;
}
else cout<<-1;
}