【数学】 集合运算

集合与元素

具有某种特定性质 具体的 或 抽象的 对象 汇集的 总体称为集合。集合中的个体称为元素。
基本特点:

  • 确定性
    给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现。 [6]
  • 无序性
    一个集合中,每个元素的地位都是相同的,元素之间是无序的。集合上可以定义序关系,定义了序关系后,元素之间就可以按照序关系排序。但就集合本身的特性而言,元素之间没有必然的序。
  • 互异性 (在 Python 语言中 Set 类型将重复的对象自动合并为一项)
    一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次。有时需要对同一元素出现多次的情形进行刻画,可以使用多重集,其中的元素允许出现多次。

属于

如果元素 ω \omega ω 在集合 A A A中,记为 ω ∈ A \omega \in A ωA, 称为 ω \omega ω 属于集合 A A A。否则称 ω \omega ω 不属于 A A A 记为 ω ∉ A \omega \notin A ω/A.

例:

ω 周一 ∈ A 一周 = { 周一,周二, ⋯   , 周六 , 周日 } \omega_{周一} \in A_{一周}=\{周一,周二,\cdots, 周六, 周日\} ω周一A一周={周一,周二,,周六,周日}.
ω 周九 ∉ A 一周 = { 周一,周二, ⋯   , 周六 , 周日 } \omega_{周九} \notin A_{一周}=\{周一,周二,\cdots, 周六, 周日\} ω周九/A一周={周一,周二,,周六,周日}.
0 ∈ [ − 1 , 1 ] = { ω , − 1 ≤ ω ≤ 1 } 0\in [-1,1]=\{\omega, -1\leq \omega\leq 1\} 0[1,1]={ω,1ω1}.
− 2 ∉ [ − 1 , 1 ] = { ω , − 1 ≤ ω ≤ 1 } -2\notin [-1,1]=\{\omega, -1\leq \omega\leq 1\} 2/[1,1]={ω,1ω1}.

Python 代码

a={1,0,1,2}
print(1 in a) 
print(3 in a) 

True
False

包含

如果任意元素 ω ∈ A \omega\in A ωA,能得到 ω ∈ B \omega \in B ωB, 记为 A ⊂ B A\subset B AB, 称为集合 B B B 包含集合 A A A,或集合 A A A 包含于集合 B B B.

{ 1 , 2 , 3 } ⊂ { 1 , 2 , 3 , 4 , 5 } \{1,2,3\}\subset\{1,2,3,4,5\} {1,2,3}{1,2,3,4,5}.
[ 0 , 1 ] ⊂ [ − 1 , 1 ] [0,1]\subset [-1,1] [0,1][1,1].

Python 代码

a={0,1,2,4}
b={2,1,0}
c={3,5}
print(b.issubset(a))
print(c.issubset(a))

True
False

一元集合运算

补集合 Ω ∖ A \Omega \setminus A ΩA

给定全集 Ω \Omega Ω. 并且 A ⊂ Ω A\subset \Omega AΩ, 则 A A A 的补集定义如下
Ω ∖ A = { ω , ω ∉ A } = { ω , ¬ ( ω ∈ A ) } \Omega\setminus A=\{\omega, \omega \notin A\}=\{\omega, \neg(\omega \in A)\} ΩA={ω,ω/A}={ω,¬(ωA)}.


Ω = R = { ω , − ∞ < ω < + ∞ } \Omega=\mathbb{R}=\{\omega,-\infty < \omega <+\infty\} Ω=R={ω,<ω<+}.
A = ( − ∞ , 1 ] A=(-\infty,1] A=(,1]
Ω ∖ A = ( − 1 , + ∞ ) \Omega \setminus A=(-1, +\infty) ΩA=(1,+).

二元集合运算

交集 A ∩ B A\cap B AB

A ∩ B = { ω , ω ∈ A 且 ω ∈ B } = { ω , ( ω ∈ A ) ∧ ( ω ∈ B ) } A\cap B=\{\omega, \omega \in A 且 \omega \in B\}=\{\omega, (\omega \in A) \wedge ( \omega \in B) \} AB={ω,ωAωB}={ω,(ωA)(ωB)}

a={0,1,2,4}
b={2,1}
print(a.union(b))

{0,1,2,4}

并集 A ∪ B A\cup B AB

A ∪ B = { ω , ω ∈ A 或 ω ∈ B } = { ω , ( ω ∈ A ) ∨ ( ω ∈ B ) } A\cup B=\{\omega, \omega \in A 或 \omega \in B\}=\{\omega, (\omega \in A) \vee ( \omega \in B) \} AB={ω,ωAωB}={ω,(ωA)(ωB)}

a={0,1,2,4}
b={2,1}
print(a.union(b))

{1,2}

差集 A ∖ B A\setminus B AB

A ∖ B = { ω , ω ∈ A 且 ω ∉ B } = { ω , ( ω ∈ A ) ∧ ¬ ( ω ∈ B ) } A\setminus B=\{\omega, \omega \in A 且 \omega \notin B\}=\{\omega, (\omega \in A) \wedge \neg( \omega \in B) \} AB={ω,ωAω/B}={ω,(ωA)¬(ωB)}

a={0,1,2,4}
b={2,3}
print(a.difference(b))

{0,1,4}

对称差集 A Δ B A\Delta B AΔB

A Δ B = { ω , ω ∈ A 异或 ω ∈ B } = { ω , ( ω ∈ A ) ⊕ ( ω ∈ B ) } A \Delta B=\{\omega, \omega \in A 异或 \omega \in B\}=\{\omega, (\omega \in A) \oplus (\omega \in B) \} AΔB={ω,ωA异或ωB}={ω,(ωA)(ωB)}

a={0,1,2,4}
b={2,3}
print(a.symmetric_difference(b))

{0,1,3,4}

多个集合运算

交集

⋂ i = 1 n A i = A 1 ∩ A 2 ∩ ⋯ ∩ A n \bigcap_{i=1}^n A_i=A_1\cap A_2\cap \cdots \cap A_n i=1nAi=A1A2An.

并集

⋃ i = 1 n A i = A 1 ∪ A 2 ∪ ⋯ ∪ A n \bigcup_{i=1}^n A_i=A_1\cup A_2\cup \cdots \cup A_n i=1nAi=A1A2An.

集合列上极限

lim ⁡ ‾ k → ∞ A k = ⋂ k = 1 ∞ ⋃ n = k ∞ A n = { ω , ∀ k ≥ 1 , ∃ n ≥ k , ω ∈ A k } \mathop{\overline{\lim}}\limits_{k\to\infty} A_k= \bigcap_{k=1}^{\infty}\bigcup_{n=k}^\infty A_n=\{\omega, \forall k\geq1, \exists n\geq k, \omega\in A_k\} klimAk=k=1n=kAn={ω,k1,nk,ωAk}
语言表述为存在无穷个 k k k 使得 ω ∈ A k \omega\in A_k ωAk

集合列的下极限

lim ⁡ ‾ k → ∞ A k = ⋃ k = 1 ∞ ⋂ n = k ∞ A n = { ω , ∃ k ≥ 1 , ∀ n ≥ k , ω ∈ A k } \mathop{\underline{\lim}}\limits_{k\to\infty} A_k= \bigcup_{k=1}^{\infty}\bigcap_{n=k}^\infty A_n=\{\omega, \exists k\geq1, \forall n\geq k, \omega\in A_k\} klimAk=k=1n=kAn={ω,k1,nk,ωAk}
语言表述为仅有有限个 k k k 使得 ω ∉ A k \omega\notin A_k ω/Ak.

任意多个集合的运算

任意与存在

∀ ω ∈ I \forall \omega \in I ωI 表示遍历 I I I 的所有元素,称为任意 ω \omega ω 属于 I I I

∃ ω ∈ I \exists \omega \in I ωI 表示至少选取 I I I 的一个元素, 称为存在 ω \omega ω 属于 I I I

交集

⋂ i ∈ I A i = { ω , ω ∈ A i , ∀ i ∈ I } \bigcap_{i\in I} A_i=\{\omega, \omega\in A_i, \forall i\in I\} iIAi={ω,ωAi,iI}.

并集

⋃ i ∈ I A i = { ω , ω ∈ A i , ∃ i ∈ I } \bigcup_{i\in I} A_i=\{\omega, \omega\in A_i, \exists i\in I\} iIAi={ω,ωAi,iI}.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlackPercy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值