最全离散数学 集合运算基本法则(包括差集公式)

最近在自学离散数学,做到集合论部分的证明题时,如

证明:A\bigcup B=A\bigcup \left ( B-A \right )

我记得好像在书本上没有学过有关差集的运算法则啊。

遇事不决,马上百度。

原来书本(离散数学及其应用第二版,傅彦。。)上少了有关差集的法则。

补交转换律: A - B = A ∩ \large \overline{B}

全部运算法则( E 是全集, \large {\color{Red} {\color{Red} }\overline{A}} 是补集 )

1.  交换律:   A ∪ B = B∪A, A ∩ B = B ∩ A

2.  结合律:  (A ∪ B) ∪ C = A ∪ (B∪C) = A ∪ B∪C

                          (A ∩ B) ∩ C = A ∩ (B ∩ C) = A ∩ B ∩ C

3.  分配律:     (A ∩ B) ∪C = (A∪C) ∩ (B∪C)

                          (A∪B) ∩ C = (A ∩ C) ∪(B ∩ C)

4.  德摩根律:     \large \overline{A\bigcup B }=\overline{A}\bigcap \overline{B}    (A ∪ B)' = A' ∩ B' \large \overline{A\bigcap B}=\overline{A}\bigcup \overline{B}(绝对形式)

       

6.  吸收律:  (A ∩ B) ∪ A = A    (A ∪ B) ∩ A = A

7.  零律:    A ∪ E = E  ,  A ∩ E = A

8.  同一律:   A ∪ Ø = A,A ∩ E= A  ,  A ∪ E = E , A ∩ Ø = Ø

9.  矛盾律:   A ∩ \large \overline{A} = Ø

10.排中律:  A ∪ \large \overline{A} = E  

11.余补律:  \LARGE \overline{\o } = E ,  \large \overline{E}= Ø

12.双重否定律: \large \overline{\overline{A}} = A

13.补交转换律: A - B = A ∩ \large \overline{B}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值