高并发的场景下,有哪些方式可以提升系统性能

一、线程池优化

线程池可以有效管理线程的生命周期,避免频繁创建和销毁线程带来的性能开销,并且能够合理利用系统资源,提高系统的吞吐量和响应速度

1.1 线程池的优化策略

        1、选择合适的线程池策略

         java 提供多种线程池类型,每种类型适用于不同的场景,根据业务需求选择合适的线程池类型是优化的第一步

  • FixedTreadPool:适用于任务量明确且相对固定的场景,该线程池的数量固定,可以有效控制线程的并发数,避免线程过多导致的资源竞争
  • CachedThreadPool: 适用于只大量短期异步任务的场景,该线程池会根据需要创建新的线程,但会重用已有的空闲线程。适合任务量不明确且执行任务时间较短的场景
  • ScheduledThreadPool: 适用于需要执行定时任务或周期性任务的场景,该线程可以延迟执行任务,或者周期性执行任务
  • WorkStealingPool:适用于任务量较大且任务之间有依赖关系的场景,该线程池基于 Fork/Jioin框架实现,可以利用多核CPU资源

2、配置合理的线程池参数

线程池的性能优化关键在于合理配置其参数,包括核心线程数、最大线程数,工作队列大小、线程存活时间等等

  • 核心线程数(CorePoolSize)

        核心线程数是线程池中始终保持的线程数量。通常根据系统的CPU核心数和任务类型对于CPU密集型任务,核心线程数可以设置为CPU核心数;对于I/O密集型任务,核心线程数可以设置为CPU核心数 *2

  •  最大线程数(maxmumPoolSize)

最大线程数是线程池中运行的最大线程池数量,当核心线程数无法满足任务需求时,线程池会创建额外的线程,直到最大线程数

  • 工作队列大小(workQueue)

工作队列用于存储等等执行的任务,队列大小需要根据任务的执行时间和任务量来设置,队列过大可能会导致内存溢出,队列过小可能会导致任务被拒绝

  • 线程存活时间(KeepAliveTime)

线程存活时间是指线程在空闲下可以存活多长时间,对于非核心线程,当它们空闲超过这个时间后会被销毁

3、任务拒绝策略

当线程池中的任务过多,超出线程池的处理能力时,需要定义合理的任务拒绝策略。Java提供了以下几种拒绝策略:

  • AbortPolicy :直接抛出 RejectExecutionException ,拒绝任务
  • CallerRunsPolicy:由调用线程执行任务,这会降低任务的提交速度
  • DiscardPolicy:直接丢弃任务,不抛出异常
  • DiscardOldestPolicy:丢弃队列中最老的任务,尝试为新任务腾出空间

4、监控于调优

线程池的性能优化时一个动态过程,需要根据实际运行情况进行监控和调整

  • 使用工具监控线程池的状态
  • 动态调整线程池的参数

        

二、缓存优化策略

    缓存可以显著减少对后端数据库或服务的访问次数,从而降低系统负载,提高响应速度

    2.1  应用层缓存

        使用Redis或者Memcached 缓存热点数据

     2.2 分布式缓存

        对于分布式系统,可以使用Redis Cluster 或者Sharded Memcached 来实现分布式缓存,提高缓存的容量和可用性。

        高并发的场景下,分布式环境可以有效分担请求压力。避免单点瓶颈

          

三、数据库优化

数据库时系统性能的瓶颈之一,优化数据库可以提升系统的整体性能

  • 索引优化

        为高频查询字段创建索引,如主键、外键、常用查询字段等。

        使用复合索引优化多字段查询,减少全表扫描。

  • 查询优化

        避免使用SELECT *,明确指定需要查询的字段,减少数据传输量。

        使用EXPLAIN分析查询计划,找出慢查询并优化,如调整JOIN条件或增加索引。

  • 分库分表

        对于数据量特别大的表,采用垂直分库(按业务模块分库)和水平分表(按时间或业务逻辑分表)策略,减少单表数据量,提高查询效率。

  • 读写分离

        采用主从复制架构,将读操作分发到从库,减轻主库的负载。

四、消息队列

消息队列可以解耦系统组件,提高系统的响应速度和可靠性

  • 异步处理

        将耗时的操作(如邮件发送、短信通知、日志记录等)通过消息队列异步处理,减少用户等待时间

  • 负载均衡

        消息队列可以将任务均匀分配到多个消费者,实现负载均衡。

五、负载均衡

负载均衡可以将请求均匀分配到多个服务器,避免单点过载,提高系统的可用性和吞吐量。

 硬件负载均衡

  • 使用硬件负载均衡设备(如F5)或云服务提供商的负载均衡服务(如AWS ELB、阿里云SLB)。

  • 硬件负载均衡设备通常具有高性能和高可靠性

软件负载均衡

         使用NginxHAProxy等软件实现负载均衡

六、代码优化

优化代码逻辑可以减少不必要的计算和资源消耗,提高系统的性能。

  • 减少锁的使用

    • 合理使用锁,避免锁竞争导致的性能问题。

    • 在高并发场景下,可以使用无锁编程乐观锁来减少锁的开销。

  • 资源复用

    • 使用连接池(如数据库连接池、HTTP连接池)复用资源,减少资源创建和销毁的开销。

  • 算法优化

    • 优化算法复杂度,减少不必要的计算。

    • 在高并发场景下,使用高效的算法可以显著提高系统的性能。

七、分布式架构

分布式架构可以将系统拆分成多个独立的服务,提高系统的可扩展性和可用性。

  • 微服务架构

    • 使用Spring CloudDubbo等框架将系统拆分成多个微服务,每个服务独立部署和扩展。

  • 服务发现与注册

    • 使用NacosEureka等服务发现与注册中心,动态发现和注册服务实例。

    • 在高并发场景下,服务发现与注册可以确保请求被正确路由到可用的服务实例。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程的大耳朵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值