题目的意思很简单,看图就能懂:把一数组分为两部分,使得两部分的连续子序列和的和最大(有点绕口啊)
对于最大连续子序列和,A[i]...A[j],肯定不会存在某一k值( i<k<j )使得A[i]...A[k]<0 或A[k]...A[j]<0,如果存在,则去掉这部分后一定能得到更大的和。于是有下面算法:
如此只需要遍历一次数组即可得到最大的连续子序列和,复杂度为 O(N)
而对于本题,则还需要一步,即如何分割数组使得两部分的最大连续子序列和的和最大:
1、设end[i]表示从1到 i 位置时所能获得的最大连续子序列和,start[i]表示从 i 到最后 N 位置所能获得的最大连续子序列和
则有:
最后枚举 k(1,2,3...N-1)
max = max>(end[k]+start[k+1]) ? max:(end[k]+start[k+1])即是最后的答案
AC代码: