POJ_2479 最大连续子序列和

题目的意思很简单,看图就能懂:把一数组分为两部分,使得两部分的连续子序列和的和最大(有点绕口啊)

对于最大连续子序列和,A[i]...A[j],肯定不会存在某一k值( i<k<j )使得A[i]...A[k]<0 或A[k]...A[j]<0,如果存在,则去掉这部分后一定能得到更大的和。于是有下面算法:

 

 

如此只需要遍历一次数组即可得到最大的连续子序列和,复杂度为 O(N)

 

 

 

而对于本题,则还需要一步,即如何分割数组使得两部分的最大连续子序列和的和最大:

1、设end[i]表示从1到 i 位置时所能获得的最大连续子序列和,start[i]表示从 i 到最后 N 位置所能获得的最大连续子序列和

则有:

 

 

 

 

最后枚举 k(1,2,3...N-1)

max = max>(end[k]+start[k+1]) ? max:(end[k]+start[k+1])即是最后的答案

 

AC代码:

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值