题意
给定
m
m
m条边,寻找一个或者两个欧拉回路包含这
m
m
m条边
输出第一行
L
−
1
L-1
L−1是第一条路径的长度,然后第二行按输入的顺序输出路径上边的编号
第三行
L
2
L_2
L2是第二条路径的长度,第4行是路径上边的编号
注意本题要文件输入输出:input.txt和output.txt
算法:dfs求欧拉回路
分类讨论比较麻烦,比较类似NOIP的day1T3
无解的条件分四种:
- m=1
- 连通块数 > 2
- 奇点数 > 4
- 连通块 = 2,奇点 = 4但是存在于同一个连通块内
有解时:
- 只有一个连通块,那么任意点出发拆成任意两条路径
- 一个连通块,但是奇点=2,则从一个奇点出发到另外一个奇点分别有两条路径
- 连通块=2,且奇点=4,且每个连通块都是2个奇点,那么从各自一个连通块内的一条欧拉路径就是一条题目所求路径
求连通块可以用并查集,也可以用dfs标号,下面的程序用dfs求连通块。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e4 + 5;
int n, m;
vector<pair<int,int> > way[maxn]; // 邻接表保存图
int good[maxn]; // 因为不知道顶点编号有哪些,good[i]=true表示顶点i在图中,否则i点不是顶点
int ban[maxn]; // ban[i]=true表示顶点i已访问
int sz, com[maxn], cnt; // sz连通块数,com[i]dfs访问序号, cnt奇点数
int root[maxn]; // 奇点是哪些
vector<int> vec; //欧拉路径序列中的顶点
void dfs(int u, int sz)
{
// printf("dfs %d\n", u);
if (!com[u]) cnt += way[u].size()%2;
com[u] = sz;
/**
* c++11的for循环方式,dev-cpp编译时,需加入-std=c++11参数
* 遍历way[u]的每个元素,相当于:
* for (int i = 0; i < way[u].size(); i++)
* {
* 这里tmp的值就是way[u][i]的值
* }
* */
for (auto tmp : way[u])
{
int v = tmp.first, id = tmp.second;
if (ban[id]) continue;
ban[id] = 1;
dfs(v, sz);
}
}
void euler(int u)
{
for (auto tmp : way[u])
{
int v = tmp.first, id = tmp.second;
if (ban[id]) continue;
ban[id] = 1;
euler(v);
vec.push_back(id);
}
}
int main()
{
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
n = 10000; // 顶点编号不超过10000
scanf("%d", &m);
if (m == 1) return !printf("-1"); // printf()会返回打印字符数2
for (int i = 1; i <= m; i++)
{
int u,v;
scanf("%d%d", &u, &v);
// 邻接表
way[u].push_back({v, i}); // 顶点u出发的边和编号
way[v].push_back({u, i}); // 顶点v出发的边和编号
good[u] = good[v] = 1;
}
int dense = 0, odd = 0;
for (int i = 1; i <= n; i++)
{
if (!good[i]) continue; // i不是顶点
if (!com[i]) // 顶点i未访问
{
cnt = 0;
dfs(i, ++sz);
root[sz] = i;
if (cnt == 4) dense = 1;
}
if (way[i].size() % 2 == 1)
{
odd++;
root[com[i]] = i;
}
}
// printf("sz = %d odd = %d dense = %d\n",sz,odd,dense);
/**
* 连通块数 > 2
* 奇点数 > 4
* 连通块 = 2,奇点 = 4但是存在于同一个连通块内
* 都无解
* */
if(sz > 2 || odd > 4 || (sz == 2 && odd == 4 && dense)) return !printf("-1");
vector<int> A, B;
if (sz == 1 && odd <= 2)
{
// 任意点开始欧拉路
memset(ban,0,sizeof(ban)); vec.clear();
euler(root[1]); A = vec;
}
else if(sz == 2)
{
// 从两个奇点开始欧拉路
memset(ban,0,sizeof(ban)); vec.clear();
euler(root[1]); A = vec;
memset(ban,0,sizeof(ban)); vec.clear();
euler(root[2]); B = vec;
}
else
{
// sz == 1 and odd == 4
for(int u = 1; u <= n; u++)
{
if (!good[u]) continue;
if (u != root[1] && way[u].size()%2 == 1)
{
way[u].push_back({root[1], -1});
way[root[1]].push_back({u, -1});
break;
}
}
int st = 1;
for (int u = 1; u <= n; u++)
{
if (!good[u]) continue;
if (way[u].size()%2 == 1) st = u;
}
memset(ban,0,sizeof(ban)); vec.clear();
euler(st);
int type = 0;
for (auto id : vec) {
if(id == -1) {
type = 1;
continue;
}
if (type == 0) A.push_back(id);
else if(type == 1) B.push_back(id);
}
if(A.empty()) swap(A,B);
}
if (B.empty())
{
printf("1\n");
printf("%d\n", A[0]);
printf("%d\n", m-1);
for (int i = 1; i < m; i++) printf("%d ", A[i]);
printf("\n");
}
else {
printf("%d\n", (int)A.size());
for (auto t : A) printf("%d ", t);
printf("\n");
printf("%d\n", (int)B.size());
for (auto t : B) printf("%d ", t);
printf("\n");
}
}