Codeforces 36 E Two Paths

题意

给定 m m m条边,寻找一个或者两个欧拉回路包含这 m m m条边
输出第一行 L − 1 L-1 L1是第一条路径的长度,然后第二行按输入的顺序输出路径上边的编号
第三行 L 2 L_2 L2是第二条路径的长度,第4行是路径上边的编号

注意本题要文件输入输出:input.txt和output.txt

算法:dfs求欧拉回路

分类讨论比较麻烦,比较类似NOIP的day1T3
无解的条件分四种:

  • m=1
  • 连通块数 > 2
  • 奇点数 > 4
  • 连通块 = 2,奇点 = 4但是存在于同一个连通块内

有解时:

  • 只有一个连通块,那么任意点出发拆成任意两条路径
  • 一个连通块,但是奇点=2,则从一个奇点出发到另外一个奇点分别有两条路径
  • 连通块=2,且奇点=4,且每个连通块都是2个奇点,那么从各自一个连通块内的一条欧拉路径就是一条题目所求路径

求连通块可以用并查集,也可以用dfs标号,下面的程序用dfs求连通块。

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e4 + 5;

int n, m;
vector<pair<int,int> > way[maxn]; // 邻接表保存图
int good[maxn];  // 因为不知道顶点编号有哪些,good[i]=true表示顶点i在图中,否则i点不是顶点

int ban[maxn];  // ban[i]=true表示顶点i已访问

int sz, com[maxn], cnt;  // sz连通块数,com[i]dfs访问序号, cnt奇点数
int root[maxn];  // 奇点是哪些

vector<int> vec;  //欧拉路径序列中的顶点

void dfs(int u, int sz)
{
	// printf("dfs %d\n", u);
	if (!com[u]) cnt += way[u].size()%2;
	com[u] = sz;
    /**
     * c++11的for循环方式,dev-cpp编译时,需加入-std=c++11参数
     * 遍历way[u]的每个元素,相当于:
     * for (int i = 0; i < way[u].size(); i++)
     * {
     *     这里tmp的值就是way[u][i]的值
     * }
     * */
	for (auto tmp : way[u])
    {
		int v = tmp.first, id = tmp.second;
		if (ban[id]) continue;
		ban[id] = 1;
		dfs(v, sz);
	}
}

void euler(int u)
{
	for (auto tmp : way[u])
    {
		int v = tmp.first, id = tmp.second;
		if (ban[id]) continue;
		ban[id] = 1;
		euler(v);
		vec.push_back(id);
	}
}

int main()
{
    freopen("input.txt", "r", stdin);
	freopen("output.txt", "w", stdout);

	n = 10000;  // 顶点编号不超过10000
	scanf("%d", &m);

	if (m == 1) return !printf("-1"); // printf()会返回打印字符数2

	for (int i = 1; i <= m; i++)
    {
		int u,v;
        scanf("%d%d", &u, &v);
        // 邻接表
		way[u].push_back({v, i}); // 顶点u出发的边和编号
		way[v].push_back({u, i}); // 顶点v出发的边和编号
		good[u] = good[v] = 1;
	}

	int dense = 0, odd = 0;
	for (int i = 1; i <= n; i++)
    {
		if (!good[i]) continue;  // i不是顶点
		if (!com[i])  // 顶点i未访问
        {
			cnt = 0;
			dfs(i, ++sz);
			root[sz] = i;
			if (cnt == 4) dense = 1;
		}
		if (way[i].size() % 2 == 1)
        {
			odd++;
			root[com[i]] = i;
		}
	}

	// printf("sz = %d odd = %d dense = %d\n",sz,odd,dense);

    /**
     * 连通块数 > 2
     * 奇点数 > 4
     * 连通块 = 2,奇点 = 4但是存在于同一个连通块内
     * 都无解
     * */    
	if(sz > 2 || odd > 4 || (sz == 2 && odd == 4 && dense)) return !printf("-1");

	vector<int> A, B;

	if (sz == 1 && odd <= 2)
    {
        // 任意点开始欧拉路
		memset(ban,0,sizeof(ban)); vec.clear(); 
		euler(root[1]); A = vec;
	}
	else if(sz == 2)
    {
        // 从两个奇点开始欧拉路
		memset(ban,0,sizeof(ban)); vec.clear(); 
		euler(root[1]); A = vec;
		memset(ban,0,sizeof(ban)); vec.clear(); 
		euler(root[2]); B = vec;
	}
	else
    { 
        // sz == 1 and odd == 4
		for(int u = 1; u <= n; u++)
        {
			if (!good[u]) continue;
			if (u != root[1] && way[u].size()%2 == 1)
            {
				way[u].push_back({root[1], -1});
				way[root[1]].push_back({u, -1});
				break;
			}
		}
		int st = 1;
		for (int u = 1; u <= n; u++)
        {
			if (!good[u]) continue;
			if (way[u].size()%2 == 1) st = u;
		}
		memset(ban,0,sizeof(ban)); vec.clear(); 
		euler(st);
		int type = 0;
		for (auto id : vec) {
			if(id == -1) {
				type = 1;
				continue;
			}
			if (type == 0) A.push_back(id);
			else if(type == 1) B.push_back(id);
		}
		if(A.empty()) swap(A,B);
	}

	if (B.empty())
    {
		printf("1\n");
		printf("%d\n", A[0]);
		printf("%d\n", m-1);
		for (int i = 1; i < m; i++) printf("%d ", A[i]);
		printf("\n");
	}
	else {
		printf("%d\n", (int)A.size());
		for (auto t : A) printf("%d ", t);
		printf("\n");
		printf("%d\n", (int)B.size());
		for (auto t : B) printf("%d ", t);
		printf("\n");
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值