线性表的应用——求解两个多项式相加问题描述(顺序表求解)

问题描述:

假设一个多项式形式为:p(x)=c1*x^(e1)+c2*x^(e2)+...+cm*x^(em)。其中ei(1≤i≤m)为整数类型的指数,并且没有相同指数的多项式项;ci(1≤i≤m)为实数类型的序数。编写求两个多项式相加的程序。

示例代码:

#include <iostream>
using namespace std;
const int MaxSize = 20;
struct PolyElem						//顺序表元素类型
{
	double coef;					//系数
	int exp;						//指数
};
class PolyClass1					//多项式顺序表类
{
	PolyElem *data;					//存放顺序表元素
	int length;						//存放顺序表长度
public:
	PolyClass1();					//构造函数
	~PolyClass1();					//析构函数,释放head顺序表的所有结点
	void DispPoly();				//输出多项式顺序表
	void CreateListR(double a[], int b[], int n);
	void Sort();					//对一个多项式顺序表按exp域递减排序
	PolyClass1 &operator=(PolyClass1 &s);//重载运算符“=”成员函数	 
	friend PolyClass1 &operator+(PolyClass1 &, PolyClass1 &);//友元函数,重载运算符“+”,用于求两个多项式相加运算
};
PolyClass1::PolyClass1()			//构造函数
{
	data = new PolyElem[MaxSize];		
	length = 0;						
}
PolyClass1::~PolyClass1()			//析构函数,释放顺序表的data空间
{
	delete[] data;
}
void PolyClass1::DispPoly()			//输出多项式顺序表
{
	int i = 0;
	bool first = true;				
	while (i<length)
	{
		if (first)
			first = false;
		else if (data[i].coef>0)
			cout << "+";		
		if (data[i].exp == 0)			
			cout << data[i].coef;
		else if (data[i].exp == 1)	
			cout << data[i].coef << "x";
		else
			cout << data[i].coef << "x^" << data[i].exp;
		i++;
	}
	cout << endl;
}
void PolyClass1::CreateListR(double a[], int b[], int n) //由含有n个元素的系数数组a和指数数组b建立多项式顺序表
{
	int i;
	for (i = 0; i<n; i++)
	{
		data[i].coef = a[i];
		data[i].exp = b[i];
	}
	length = n;
}

void PolyClass1::Sort()		//采用直接插入排序方法对一个多项式顺序表按exp域递减排序
{
	int i, j;
	PolyElem tmp;
	for (i = 1; i<length; i++)		
	{
		tmp = data[i];			
		j = i - 1;					
		while (j >= 0 && data[j].exp<tmp.exp)
		{
			data[j + 1] = data[j];	
			j--;			
		}
		data[j + 1] = tmp;			
	}
}
PolyClass1 &PolyClass1::operator=(PolyClass1 &s)//重载运算符“=”成员函数	 
{
	int i;
	delete[] data;
	data = new PolyElem[MaxSize];	
	for (i = 0; i<s.length; i++)
	{
		data[i].coef = s.data[i].coef;
		data[i].exp = s.data[i].exp;
	}
	length = s.length;
	return *this;				
}
PolyClass1 &operator+(PolyClass1 &poly1, PolyClass1 &poly2) //由两个多项式poly1、poly2相加运算得到poly3
{
	int i = 0, j = 0, k = 0;
	double c;
	static PolyClass1 poly3;								//因要返回该对象,所以设置为静态的
	while (i<poly1.length && j<poly2.length)
	{
		if (poly1.data[i].exp>poly2.data[j].exp)	
		{
			poly3.data[k].exp = poly1.data[i].exp;	
			poly3.data[k].coef = poly1.data[i].coef;
			i++; k++;
		}
		else if (poly1.data[i].exp<poly2.data[j].exp)
		{
			poly3.data[k].exp = poly2.data[j].exp;	
			poly3.data[k].coef = poly2.data[j].coef;
			j++; k++;
		}
		else										
		{
			c = poly1.data[i].coef + poly2.data[j].coef;	//求两指数相等元素的系数和
			if (c != 0)										//系数和不为0时复制
			{
				poly3.data[k].exp = poly1.data[i].exp;		//复制元素
				poly3.data[k].coef = c;
				k++;
			}
			i++; j++;
		}
	}
	while (i<poly1.length)									//复制poly1余下的元素
	{
		poly3.data[k].exp = poly1.data[i].exp;	
		poly3.data[k].coef = poly1.data[i].coef;
		i++; k++;
	}
	while (j<poly2.length)									//复制poly2余下的元素
	{
		poly3.data[k].exp = poly2.data[j].exp;	
		poly3.data[k].coef = poly2.data[j].coef;
		j++; k++;
	}
	poly3.length = k;
	return poly3;
}
void main()
{
	PolyClass1 Poly1, Poly2, Poly3;	//建立3个多项式顺序表对象
	double a[MaxSize];
	int b[MaxSize], n;
	//===创建第1个多项式顺序表
	a[0] = 2.0; b[0] = 3;
	a[1] = 3.2; b[1] = 5;
	a[2] = -6.0; b[2] = 1;
	a[3] = 10.0; b[3] = 0;
	n = 4;
	Poly1.CreateListR(a, b, n);
	cout << "第1个多项式: "; Poly1.DispPoly();
	Poly1.Sort();
	cout << "排序后结果:  "; Poly1.DispPoly();
	//===创建第2个多项式顺序表
	a[0] = 6.0; b[0] = 1;
	a[1] = 1.8; b[1] = 5;
	a[2] = -2.0; b[2] = 3;
	a[3] = 1.0; b[3] = 2;
	a[4] = -2.5; b[4] = 4;
	a[5] = -5.0; b[5] = 0;
	n = 6;
	Poly2.CreateListR(a, b, n);
	cout << "第2个多项式: "; Poly2.DispPoly();
	Poly2.Sort();
	cout << "排序后结果:  "; Poly2.DispPoly();
	//===
	Poly3 = Poly1 + Poly2;
	cout << "相加后多项式:"; Poly3.DispPoly();
	cout << "销毁3个多项式顺序表\n";
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值