13.1—动态规划—Triangle

描述
Given a triangle, find the minimum path sum from top to boom. Each step you may move to adjacent
numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to boom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number
of rows in the triangle.

#include<iostream>
#include<vector>
#include<limits>
using namespace std;
bool flag = true;
int mymin(int a, int b)
{
	return a < b ? a : b;
}

int Triangle(const vector<vector<int>> &input)
{
	if (input.size() < 1)
	{
		flag = false;
		return 0;
	}
	int len = input.size();
	vector<int> sum(input[len - 1].size(), 0);
	vector<int> sumcopy(input[len - 1].size(), 0);
	sum[0] = input[0][0];
	sumcopy[0] = input[0][0];
	for (int i = 1; i < len; i++)
	{
		for (int j = 0; j < input[i].size(); j++)
		{
			if (j == 0)
				sum[j] = sumcopy[j]+input[i][j];
			else if (j == input[i].size() - 1)
				sum[j] = sumcopy[j - 1] + input[i][j];
			else
				sum[j] = mymin(sumcopy[j - 1], sumcopy[j])+input[i][j];
		}
		sumcopy = sum;
	}
	int minsum = INT_MAX;
	for (int i = 0; i < sum.size(); i++)
		if (minsum>sum[i])
			minsum = sum[i];

	return minsum;
}
int main()
{
	vector<int>vec1{ 2 };
	vector<int>vec2{ 3,4 };
	vector<int>vec3{ 6,5,7 };
	vector<int>vec4{ 4,1,8,3 };
	vector<vector<int>> input{ vec1, vec2, vec3, vec4 };
	int minsum = Triangle(input);
	if (flag)
		cout << "minmum path sum:" << minsum << endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值