redis-benchmark是redis官方提供的压测工具,安装好redis后,默认安装。使用简便。
语法:
Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]
模拟20个客户端,100000次请求
redis-benchmark -h 192.168.1.1 -p 6379 -n 100000 -c 20
模拟1000000次请求,生成100000000个set结构
redis-benchmark -t set -n 1000000 -r 100000000
模拟ping,set,get 各100000次,结果输出到csv文件
redis-benchmark -t ping,set,get -n 100000 --csv
模拟100000次键foo的存储性能
redis-benchmark -n 100000 -q script load "redis.call('set','foo','bar')"
模拟一下十万次请求:
redis-benchmark -n 100000 -q
模拟一下百万级访问近百万key:
[root@vm-ArthurGuo-1 ~]# redis-benchmark -n 1000000 -r1000000 -q
模拟一个万级用户的并发:
redis-benchmark -c 10000 -n 1000000 -r 1000000 -q
redis-benchmark --help
Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]
-h <hostname> Server hostname (default 127.0.0.1) --主机ip地址
-p <port> Server port (default 6379) --端口
-s <socket> Server socket (overrides host and port) --socket(如果测试在服务器上测可以用socket方式)
-c <clients> Number of parallel connections (default 50) --客户端连接数
-n <requests> Total number of requests (default 10000) --总请求数
-d <size> Data size of SET/GET value in bytes (default 2) --set、get的value大小
-dbnum <db> SELECT the specified db number (default 0) --选择哪个数据库测试(一般0-15)
-k <boolean> 1=keep alive 0=reconnect (default 1) --是否采用keep alive模式
-r <keyspacelen> Use random keys for SET/GET/INCR, random values for SADD --随机产生键值时的随机数范围
Using this option the benchmark will expand the string __rand_int__
inside an argument with a 12 digits number in the specified range
from 0 to keyspacelen-1. The substitution changes every time a command
is executed. Default tests use this to hit random keys in the
specified range.
-P <numreq> Pipeline <numreq> requests. Default 1 (no pipeline). --pipeline的个数(如果使用pipeline会把多个命令封装在一起提高效率)
-q Quiet. Just show query/sec values --仅仅查看每秒的查询数
--csv Output in CSV format --用csv方式输出
-l Loop. Run the tests forever --循环次数
-t <tests> Only run the comma separated list of tests. The test --指定命令
names are the same as the ones produced as output.
-I Idle mode. Just open N idle connections and wait. --仅打开n个空闲链接
Examples:
Run the benchmark with the default configuration against 127.0.0.1:6379:
$ redis-benchmark
Use 20 parallel clients, for a total of 100k requests, against 192.168.1.1:
$ redis-benchmark -h 192.168.1.1 -p 6379 -n 100000 -c 20 --测试set、get、mset、sadd等场景下的性能
Fill 127.0.0.1:6379 with about 1 million keys only using the SET test:
$ redis-benchmark -t set -n 1000000 -r 100000000 --测试set随机数的性能
Benchmark 127.0.0.1:6379 for a few commands producing CSV output:
$ redis-benchmark -t ping,set,get -n 100000 --csv --使用csv的输出方式测试
Benchmark a specific command line:
$ redis-benchmark -r 10000 -n 10000 eval 'return redis.call("ping")' 0 --测试基本命令的速度
Fill a list with 10000 random elements:
$ redis-benchmark -r 10000 -n 10000 lpush mylist __rand_int__ --测试list入队的速度
On user specified command lines __rand_int__ is replaced with a random integer
with a range of values selected by the -r option.
下面我就测下我的笔记本电脑的redis性能:
[root@db1 ~]# redis-benchmark -h 127.0.0.1 -p 6379 -n 100000 -c 20
====== PING_INLINE ======
100000 requests completed in 1.09 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.86% <= 1 milliseconds
100.00% <= 2 milliseconds
100.00% <= 2 milliseconds
91659.03 requests per second
====== PING_BULK ======
100000 requests completed in 1.07 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.94% <= 1 milliseconds
100.00% <= 1 milliseconds
93545.37 requests per second
====== SET ======
100000 requests completed in 1.03 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.78% <= 1 milliseconds
100.00% <= 1 milliseconds
97087.38 requests per second
====== GET ======
100000 requests completed in 1.10 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.81% <= 1 milliseconds
100.00% <= 1 milliseconds
90909.09 requests per second
====== INCR ======
100000 requests completed in 1.09 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.86% <= 1 milliseconds
100.00% <= 1 milliseconds
91911.76 requests per second
====== LPUSH ======
100000 requests completed in 1.07 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.85% <= 1 milliseconds
100.00% <= 1 milliseconds
93808.63 requests per second
====== LPOP ======
100000 requests completed in 1.01 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.89% <= 1 milliseconds
100.00% <= 1 milliseconds
98522.17 requests per second
====== SADD ======
100000 requests completed in 1.04 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.76% <= 1 milliseconds
100.00% <= 1 milliseconds
96153.85 requests per second
====== SPOP ======
100000 requests completed in 1.11 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.92% <= 1 milliseconds
100.00% <= 1 milliseconds
90171.33 requests per second
====== LPUSH (needed to benchmark LRANGE) ======
100000 requests completed in 1.09 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.82% <= 1 milliseconds
100.00% <= 1 milliseconds
92081.03 requests per second
====== LRANGE_100 (first 100 elements) ======
100000 requests completed in 2.53 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.91% <= 1 milliseconds
100.00% <= 2 milliseconds
100.00% <= 2 milliseconds
39603.96 requests per second
====== LRANGE_300 (first 300 elements) ======
100000 requests completed in 5.17 seconds
20 parallel clients
3 bytes payload
keep alive: 1
91.01% <= 1 milliseconds
99.94% <= 2 milliseconds
100.00% <= 2 milliseconds
19346.10 requests per second
====== LRANGE_500 (first 450 elements) ======
100000 requests completed in 7.41 seconds
20 parallel clients
3 bytes payload
keep alive: 1
61.54% <= 1 milliseconds
98.36% <= 2 milliseconds
99.96% <= 3 milliseconds
100.00% <= 4 milliseconds
100.00% <= 4 milliseconds
13498.92 requests per second
====== LRANGE_600 (first 600 elements) ======
100000 requests completed in 9.49 seconds
20 parallel clients
3 bytes payload
keep alive: 1
41.24% <= 1 milliseconds
91.89% <= 2 milliseconds
99.78% <= 3 milliseconds
100.00% <= 4 milliseconds
100.00% <= 4 milliseconds
10541.85 requests per second
====== MSET (10 keys) ======
100000 requests completed in 1.68 seconds
20 parallel clients
3 bytes payload
keep alive: 1
99.28% <= 1 milliseconds
100.00% <= 1 milliseconds
59382.42 requests per second
从以上可以看出,20个客户端,每种场景均有100000次请求:ping、set、get、lpush、lpop、spop等都达到90000多rps,但lrange前100、300、500等就比较慢了,才10000多rps。
再测下set的速度:
[root@db1 ~]# redis-benchmark -t set -n 1000000 -r 100000000
====== SET ======
1000000 requests completed in 10.56 seconds
50 parallel clients
3 bytes payload
keep alive: 1
98.65% <= 1 milliseconds
99.90% <= 2 milliseconds
99.99% <= 3 milliseconds
100.00% <= 3 milliseconds
94741.83 requests per second
每秒94741次,非常快
再来测试下list的入队速度:
[root@db1 ~]# redis-benchmark -r 100000 -n 100000 lpush mylist __rand_int__
====== lpush mylist __rand_int__ ======
100000 requests completed in 0.97 seconds
50 parallel clients
3 bytes payload
keep alive: 1
98.83% <= 1 milliseconds
100.00% <= 1 milliseconds
102774.92 requests per second
超过了10w次。
———————————————