RuntimeError: nms_impl: implementation for device cuda:0 not found.

文章描述了在运行mmdetectionv3.2.0中FasterR-CNN模型时遇到的CUDA错误,由于找不到设备。作者通过检查环境确认GPU可用并发现版本匹配,但问题在于mmcv库。解决方案是卸载并重新安装mmcv。
摘要由CSDN通过智能技术生成

2023年12月7日
在跑mmdetection(v3.2.0)的faster RCNN模型时报错:

from mmdet.apis import DetInferencer

inferencer = DetInferencer(model='faster-rcnn_r50_fpn_1x_coco', device='cuda:0')

# print(inferencer.cfg)
# img_path = 'img'
inferencer(inputs='img',
           out_dir='faster_rcnn/results',
           return_vis=True,
           no_save_pred=False,
           batch_size=8
           )
print('done')

错误信息如标题所示,提示找不到显卡:
RuntimeError: nms_impl: implementation for device cuda:0 not found.

在该虚拟环境中运行代码检查是否能调用cuda:

import torch

print("是否可用:", torch.cuda.is_available())        # 查看GPU是否可用
print("GPU数量:", torch.cuda.device_count())        # 查看GPU数量
print("torch方法查看CUDA版本:", torch.version.cuda)  # torch方法查看CUDA版本
index = torch.cuda.current_device()
print("GPU索引号:", index)    # 查看GPU索引号
print("GPU名称:", torch.cuda.get_device_name(index))    # 根据索引号得到GPU名称

输出表示一切正常:

是否可用: True
GPU数量: 1
torch方法查看CUDA版本: 12.1
GPU索引号: 0
GPU名称: NVIDIA GeForce RTX 4070 Laptop GPU

检查torch,torchvision,torchaudio各包版本也都对得上(Python 3.8.18):

!pip list
torch                     2.1.0+cu121       
torchaudio                2.1.0+cu121       
torchvision               0.16.0+cu121  

解决方法——重装mmcv:

参考此篇博文的评论区:
https://blog.csdn.net/NCEPUDJ/article/details/121882436

mim uninstall mmcv
mim install mmcv

这里使用mim是因为mmdetection的官方文档里的教程:
https://mmdetection.readthedocs.io/zh-cn/latest/get_started.html
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值