第四十篇 重复牛顿-柯特斯法则
如果积分的范围很大,一种方法是在整个区间内上拟合一个高阶多项式,然后将这个大区间分解几个等长度的小区间,在每个小区间上使用低阶多项式。上篇数值积分基础-牛顿柯特斯法则中描述的问题都可以使用这种“重复”的形式。
重复矩形法则
如下图所示,将积分区间[A, B]划分为k条,宽度为hi, i = 1,2,…,k。虽然让所有的小区间具有相同的长度是很容易的,但是如果函数变化较快的地方可以让区间更小一些。在一种“自适应”求积的方法中,区间的宽带可以自动修改,这将在后面的文章中描述。
在重复矩形法则中,每个区间的面积近似于一个矩形,其高度由区间下限对应的函数给出。然后把它们加在一起,得到整体的积分值
由上图可以看出,该方法相当于用一系列水平线替换平滑的连续函数f(x)。取得区间越多,越接近函数得实际形状。如果所有的条带宽度都相同h,则公式为
计算实例
使用重复矩阵法则,三条等宽度样条去计算下面积分
得到
因此
精确解为0.7071
可以看出,虽然数值解得精确性较差,但比较上篇数值积分基础-牛顿柯特斯法则单独应用矩阵法则的结果0.5554相比有了明显的改善。而更多的区间可以获得更好的精度。
重复梯形法则
在重复梯形规则中,每个条带的面积近似为一个梯形,如下图所示。
每个梯形在首尾两点上与函数重合。然后把它们加在一起,得到整体的解决方案,因此
由上图可以看出,该方法相当于用一系列线段替换平滑的连续函数f(x)。如果所有的区间都取相同得宽度h,则公式为
计算实例
使用重复梯形法则,3个等分区间来计算下面的积分
得到每段长
因此
精确解为0.7071
可以看出,在这种情况下,通过分成几个区间,数值解得到了很大的改进。因为上篇数值积分基础-牛顿柯特斯法则并未划分区间的单个梯形规则的解只为0.6704。
重复辛普森(simpson)法则
辛普森法则的一整个区间需要三个样本点,因此重复的辛普森法则必须有偶数个小区间,如下图所示。
每对区间必须有相同的宽度,但对与对之间的宽度可以取不同的值。重复的辛普森法则在三个样本点上拟合一条抛物线,假设有k个(偶数)区间,得到以下表达式
如果所有的区间宽度都取h,则规则化简为
计算实例
使用重复辛普森法则,分成四段等宽度,去计算下面积分
每段宽度