UVA1364 Knights of the Round Table

微微发亮的传送门

求无向图的双连通分量,然后判断这个双连通分量是否存在奇环,实际上,我们可以反着想,如果一个连通分量是个二分图,那么就必然不存在奇环,所以,我们对于每一个二分图,判断它是否是二分图,如果是,就把它放到结果中即可。

至于判断奇环神马的模板,就是抄了抄佳哥的……其实上交的也不错……不过佳哥的我感觉更好一些

#include <cstdio>
#include <cstring>
#include <vector>
#include <stack>
using namespace std;
const int N = 1111;
int map[N][N], n, m, pre[N], iscut[N], bccno[N], dfs_clock, bcc_cnt;
int odd[N], col[N];
vector<int> G[N], bcc[N];
struct edge{
	int u, v;
	edge(int u, int v) : u(u), v(v){}
};
stack<edge> S;
int dfs(int u, int fa){
	int lowu = pre[u] = ++dfs_clock;
	int chd = 0;
	for (int i = 0; i < G[u].size(); i++){
		int v = G[u][i];
		edge e = edge(u, v);
		if (!pre[v]){
			S.push(e);
			chd += 1;
			int lowv = dfs(v, u);
			lowu = min(lowv, lowu);
			if (lowv >= pre[u]){
				iscut[u] = 1;
				bcc_cnt += 1; bcc[bcc_cnt].clear();
				for(; ;){
					edge x = S.top(); S.pop();
					if (bccno[x.u] != bcc_cnt){bcc[bcc_cnt].push_back(x.u); bccno[x.u] = bcc_cnt;}
					if (bccno[x.v] != bcc_cnt){bcc[bcc_cnt].push_back(x.v); bccno[x.v] = bcc_cnt;}
					if (x.u == u && x.v == v) break;
				}
			}
		}
		else if (pre[v] < pre[u] && v != fa){
			S.push(e);
			lowu = min(lowu, pre[v]);
		}
	}
	if (fa < 0 && chd == 1) iscut[u] = 0;
	return lowu;
}
void find_bcc(int n){
	memset(pre, 0, sizeof(pre));
	memset(iscut, 0, sizeof(iscut));
	memset(bccno, 0, sizeof(bccno));
	dfs_clock = bcc_cnt = 0;
	for (int i = 0; i < n; i++)
		if (!pre[i]) dfs(i, -1);
}
bool bipartite(int u, int b){
	for (int i = 0; i < G[u].size(); i++){
		int v = G[u][i]; if (bccno[v] != b) continue;
		if (col[v] == col[u]) return 0;
		if (!col[v]){
			col[v] = 3 - col[u];
			if (!bipartite(v, b)) return 0;
		}
	}
	return 1;
}
int main(){
	while(~scanf("%d%d", &n, &m)){
	    if (!n && !m) break;
		int x, y;
		memset(map, 0, sizeof(map));
		for (int i = 0; i < n; i++)
			G[i].clear();
		for (int i = 0; i < m; i++){
			scanf("%d%d", &x, &y);
			x -= 1; y -= 1;
			map[x][y] = map[y][x] = 1;
		}
		for (int i = 0; i < n; i++)
			for (int j = i + 1; j < n; j++)
				if (!map[i][j]){G[i].push_back(j); G[j].push_back(i);}
		find_bcc(n);
		memset(odd, 0, sizeof(odd));
		for (int i = 1; i <= bcc_cnt; i++){
			memset(col, 0, sizeof(col));
			for (int j = 0; j < bcc[i].size(); j++)
				bccno[bcc[i][j]] = i;
			int u = bcc[i][0];
			col[u] = 1;
			if (!bipartite(u, i))
				for (int j = 0; j < bcc[i].size(); j++) odd[bcc[i][j]] = 1;
		}
		int ans = n;
		for (int i = 0; i < n; i++)
			if (odd[i]) ans -= 1;
		printf("%d\n", ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值