逻辑结构与物理结构
逻辑结构面向问题,物理结构面向计算机。
逻辑结构
逻辑结构是指数据对象中数据元素之间的相互关系。具体可以分为以下四种:
1. 集合结构
集合结构中的数据元素除了同属于一个集合外,它们之间没有其他关系。各个数据元素是平等的。类似于数学中的集合。
2. 线性结构
线性结构中的数据元素之间是一对一的关系。
3. 树形结构
数据元素之间存在一种一对多的层次关系。
4. 图形结构
数据元素之间存在多对多的关系。
注意:逻辑结构是针对具体问题的,是为了解决某个问题,在对问题理解的基础上,选择一个合适的数据结构表示数据元素之间的逻辑关系。
物理结构(存储结构)
是指数据的逻辑结构在计算机中的存储形式。
数据是数据元素的集合,那么根据物理结构的定义,实际上就是如何把数据元素存储到计算机的存储器中。(存储器主要是针对内存而言的,硬盘、软盘等外部存储器的数据组织通常用文件结构来描述。)
数据的存储结构应该正确反应数据元素之间的逻辑关系,这是实现物理结构的重点和目标。
数据元素的存储结构有以下两种:
1. 顺序存储结构
把数据元素存放在地址连续的存储单元里,其数据间的逻辑关系和物理关系是一致的。
2. 链式存储结构
把数据元素存放在任意的存储单元里,这组存储单元可以使连续的,也可以是不连续的。
这时数据元素的存储关系并不能反映其逻辑关系,所以需要一个指针来存放数据元素的地址(打个比方,先领号,可以随便转,叫到你之后再来就可以,或者说,无间道中的单线联系,只有上线知道下线是谁)。显然,链式存储更加灵活。
抽象数据类型
数据类型
是指一组性质相同的值的集合及定义在此集合上的一些操作的总称。
每个变量、常量和表达式都有各自的取值范围。类型就是用来说明变量或者表达式的取值范围和所能进行的操作。
对已有的数据类型进行抽象,就有了抽象数据类型。
抽象数据类型(ADT)
是指一个数学模型以及定义在该模型上的一组操作。抽象数据类型的定义仅仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。
比如说,“整型”就是一个抽象数据类型,虽然它在不同计算机中的实现方法可能不一样(底层语言),但是由于其定义的数学特性是星通的,所以在计算机编程看来,它们都是相同的。
抽象数据类型不仅仅指那些已经定义并实现的数据类型,还可以是计算机编程者在设计软件程序时自己定义的数据类型,比如一个含三个整型变量表示三维坐标的数据类型等等。
抽象数据类型还包括定义在该数学模型上的一组操作。
所以,一个抽象数据类型定义了:一个数据对象、数据对象中各数据元素之间的关系及对数据元素的操作。
描述抽象数据类型的标准格式:
ADT 抽象数据类型名
Data
数据元素之间逻辑关系的定义
Operation
操作1
初始条件
操作结果描述
操作2
……
操作n
……
endADT