POJ 2191 Mersenne Composite Numbers 解题报告(大数因式分解)

96 篇文章 0 订阅

Mersenne Composite Numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 2026 Accepted: 975

Description

One of the world-wide cooperative computing tasks is the "Grand Internet Mersenne Prime Search" -- GIMPS -- striving to find ever-larger prime numbers by examining a particular category of such numbers. 
A Mersenne number is defined as a number of the form (2 p–1), where p is a prime number -- a number divisible only by one and itself. (A number that can be divided by numbers other than itself and one are called "composite" numbers, and each of these can be uniquely represented by the prime numbers that can be multiplied together to generate the composite number — referred to as its prime factors.) 
Initially it looks as though the Mersenne numbers are all primes. 
PrimeCorresponding Mersenne Number
24–1 = 3 -- prime
38–1 = 7 -- prime
532–1 = 31 -- prime
7128–1 = 127 -- prime

If, however, we are having a "Grand Internet" search, that must not be the case. 
Where k is an input parameter, compute all the Mersenne composite numbers less than 2 k -- where k <= 63 (that is, it will fit in a 64-bit signed integer on the computer). In Java, the "long" data type is a signed 64 bit integer. Under gcc and g++ (C and C++ in the programming contest environment), the "long long" data type is a signed 64 bit integer. 

Input

Input contains a single number, without leading or trailing blanks, giving the value of k. As promised, k <= 63.

Output

One line per Mersenne composite number giving first the prime factors (in increasing order) separate by asterisks, an equal sign, the Mersenne number itself, an equal sign, and then the explicit statement of the Mersenne number, as shown in the sample output. Use exactly this format. Note that all separating white space fields consist of one blank.

Sample Input

31

Sample Output

23 * 89 = 2047 = ( 2 ^ 11 ) - 1
47 * 178481 = 8388607 = ( 2 ^ 23 ) - 1
233 * 1103 * 2089 = 536870911 = ( 2 ^ 29 ) - 1

    解题报告:求2的素数次幂减一的数的因式分解。最大2^63-1。打表肯定可以,但是不够高级。

    Discuss里也有讨论了,可以使用Miller_Rabin进行素数判定,Pollard's ρ进行因式分解。这两个算法很容易找到,都是概率算法,不过理解需要花点时间。

    下面的代码借鉴了Kuangbin大神的模板,明天自己写个。

#include<cstdio>
#include<cstring>
#include<ctime>
#include<iostream>
#include<algorithm>
using namespace std;

//****************************************************************
// Miller_Rabin 算法进行素数测试
//速度快,而且可以判断 <2^63的数
//****************************************************************
const int S=40;//随机算法判定次数,S越大,判错概率越小

//计算 (a*b)%c.   a,b都是long long的数,直接相乘可能溢出的
//  a,b,c <2^63
long long mult_mod(long long a,long long b,long long c)
{
    a%=c;
    b%=c;
    long long ret=0;
    while(b)
    {
        if(b&1){ret+=a;ret%=c;}
        a<<=1;
        if(a>=c)a%=c;
        b>>=1;
    }
    return ret;
}

//计算  x^n %c
long long pow_mod(long long x,long long n,long long mod)//x^n%c
{
    if(n==1)return x%mod;
    x%=mod;
    long long tmp=x;
    long long ret=1;
    while(n)
    {
        if(n&1) ret=mult_mod(ret,tmp,mod);
        tmp=mult_mod(tmp,tmp,mod);
        n>>=1;
    }
    return ret;
}

//以a为基,n-1=x*2^t      a^(n-1)=1(mod n)  验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(long long a,long long n,long long x,long long t)
{
    long long ret=pow_mod(a,x,n);
    long long last=ret;
    for(int i=1;i<=t;i++)
    {
        ret=mult_mod(ret,ret,n);
        if(ret==1&&last!=1&&last!=n-1) return true;//合数
        last=ret;
    }
    if(ret!=1) return true;
    return false;
}

// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;

bool Miller_Rabin(long long n)
{
    if(n<2)return false;
    if(n==2)return true;
    if((n&1)==0) return false;//偶数
    long long x=n-1;
    long long t=0;
    while((x&1)==0){x>>=1;t++;}
    for(int i=0;i<S;i++)
    {
        long long a=rand()%(n-1)+1;//rand()需要stdlib.h头文件
        if(check(a,n,x,t))
            return false;//合数
    }
    return true;
}


//************************************************
//pollard_rho 算法进行质因数分解
//************************************************
long long factor[100];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始

long long gcd(long long a,long long b)
{
    if(a==0)return 1;//???????
    if(a<0) return gcd(-a,b);
    while(b)
    {
        long long t=a%b;
        a=b;
        b=t;
    }
    return a;
}

long long Pollard_rho(long long x,long long c)
{
    long long i=1,k=2;
    long long x0=rand()%x;
    long long y=x0;
    while(1)
    {
        i++;
        x0=(mult_mod(x0,x0,x)+c)%x;
        long long d=gcd(y-x0,x);
        if(d!=1&&d!=x) return d;
        if(y==x0) return x;
        if(i==k){y=x0;k+=k;}
    }
}
//对n进行素因子分解
void findfac(long long n)
{
    if(Miller_Rabin(n))//素数
    {
        factor[tol++]=n;
        return;
    }
    long long p=n;
    while(p>=n)p=Pollard_rho(p,rand()%(n-1)+1);
    findfac(p);
    findfac(n/p);
}

typedef long long LL;

void work(int n)
{
    tol=0;
    findfac((1LL<<(n))-1);

    if(tol!=1)
    {
        sort(factor, factor+tol);

        printf("%lld", factor[0]);
        for(int i=1;i<tol;i++)
            printf(" * %lld", factor[i]);
        printf(" = %lld = ( 2 ^ %d ) - 1\n", (1LL<<(n))-1, n);
    }
}

bool isPrime(int n)
{
    for(int i=2;i*i<=n;i++) if(n%i==0)
        return false;
    return true;
}

int main()
{
    int n;
    while(~scanf("%d", &n))
    {
        for(int i=2;i<=n;i++) if(isPrime(i))
        {
            work(i);
        }
    }
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值