(1)Python所有方向的学习路线(新版)
这是我花了几天的时间去把Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
最近我才对这些路线做了一下新的更新,知识体系更全面了。
(2)Python学习视频
包含了Python入门、爬虫、数据分析和web开发的学习视频,总共100多个,虽然没有那么全面,但是对于入门来说是没问题的,学完这些之后,你可以按照我上面的学习路线去网上找其他的知识资源进行进阶。
(3)100多个练手项目
我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了,只是里面的项目比较多,水平也是参差不齐,大家可以挑自己能做的项目去练练。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
names['mean_semg_%s'%i]=get_mean_semg(names['data%s'%i])
plt.figure()
plt.plot(names['mean_semg_%s'%i])
plt.ylim(0,5)
plt.savefig('a%s'%i,dpi=400)
![](https://pic4.zhimg.com/80/v2-db6bf3200a5798bcae69fc29fe7dcfd7_hd.jpg)
握拳
![](https://pic1.zhimg.com/80/v2-58d0ad9496daeadb8d80c0bb63ed2e34_hd.jpg)
张手
![](https://pic3.zhimg.com/80/v2-979316260d8847ad2ddb4993df4b81ab_hd.jpg)
内翻
![](https://pic2.zhimg.com/80/v2-56a76307d169d9e857ef53e99b5518b7_hd.jpg)
外翻
def get_move_window(mean_semg):
mean_semg_arr=np.array(mean_semg)
return pd.rolling_mean(mean_semg_arr,window=800)
def get_break(data,i,thre,windowlenth):
for i in range(i,i+windowlenth):
if data[i]<thre:
return 0
return 1
for i in range(1,5):
names[‘move_averge_%s’%i]=get_move_window(names[‘mean_semg_%s’%i])
names[‘sta_%s’%i]=[]
names[‘end_%s’%i]=[]
thre=1.1
windowlenth=800
for j in range(len(names[‘move_averge_%s’%i])-1):
if get_break(names[‘move_averge_%s’%i],j,thre,windowlenth)==0 and get_break(names[‘move_averge_%s’%i],j+1,thre,windowlenth)==1:
names[‘sta_%s’%i].append(j)
if get_break(names[‘move_averge_%s’%i],j,thre,windowlenth)==1 and get_break(names[‘move_averge_%s’%i],j+1,thre,windowlenth)==0:
names[‘end_%s’%i].append(j)
获取平均值起始点,并将对应时间点作用于原始信号上,对四通道信号进行行动段提取,并将长度较小的部分过滤,视为噪音
for i in range(1,5):
names[‘period_%s’%i]=[]
names[‘sta_filt_%s’%i]=[]
names[‘end_filt_%s’%i]=[]
for j in range(len(names[‘sta_%s’%i])):
names[‘period_%s’%i].append(names[‘end_%s’%i][j]-names[‘sta_%s’%i][j])
for k in range(len(names[‘period_%s’%i])):
if names[‘period_%s’%i][k]>5000:
names[‘sta_filt_%s’%i].append(names[‘sta_%s’%i][k])
names[‘end_filt_%s’%i].append(names[‘end_%s’%i][k])
for i in range(1,len(sta_filt_1)+1):
names[‘data1_cut%s’%i]=data1[sta_filt_1[i-1]:end_filt_1[i-1]]
for i in range(1,len(sta_filt_2)+1):
names[‘data2_cut%s’%i]=data2[sta_filt_2[i-1]:end_filt_2[i-1]]
for i in range(1,len(sta_filt_3)+1):
names[‘data3_cut%s’%i]=data3[sta_filt_3[i-1]:end_filt_3[i-1]]
for i in range(1,len(sta_filt_4)+1):
names[‘data4_cut%s’%i]=data4[sta_filt_4[i-1]:end_filt_4[i-1]]
plt.figure(figsize=(50,3))
for i in range(1,21):
plt.subplot2grid((1,20),(0,i-1),colspan=1).plot(names[‘data1_cut%s’%i])
plt.ylim(0,10)
plt.title(‘fist’)
plt.figure(figsize=(50,3))
for i in range(1,22):
plt.subplot2grid((1,21),(0,i-1),colspan=1).plot(names[‘data2_cut%s’%i])
plt.ylim(0,10)
plt.title(‘open’)
plt.figure(figsize=(50,3))
for i in range(1,25):
plt.subplot2grid((1,24),(0,i-1),colspan=1).plot(names[‘data3_cut%s’%i])
plt.ylim(0,10)
plt.title(‘toright’)
plt.figure(figsize=(50,3))
for i in range(1,21):
plt.subplot2grid((1,20),(0,i-1),colspan=1).plot(names[‘data4_cut%s’%i])
plt.ylim(0,10)
plt.title(‘toleft’)
![](https://pic2.zhimg.com/80/v2-079dbb2d0efa13ed796e111eeb6f3535_hd.jpg)
握拳
![](https://pic4.zhimg.com/80/v2-2aa85121c8e3b912a43b65f50af6644b_hd.jpg)
张手
![](https://pic2.zhimg.com/80/v2-52bebd32c9ad6c1e7044d06cbf7df534_hd.jpg)
内弯
![](https://pic2.zhimg.com/80/v2-f9abc440e25b360fe7cc00eb6bb66230_hd.jpg)
外翻
对各通道行动段求区间的平均值MAV,可以看出对于不同的动作,MAV值区别明显,可以作为特征向量对信号进行特征提取
mav_fist=pd.DataFrame(columns=[‘ch1’,‘ch2’,‘ch3’,‘ch4’],index=[np.arange(20)])
for i in range(1,21):
mav_fist.loc[i-1,‘ch1’]=names[‘data1_cut%s’%i].ch1.mean()
mav_fist.loc[i-1,‘ch2’]=names[‘data1_cut%s’%i].ch2.mean()
mav_fist.loc[i-1,‘ch3’]=names[‘data1_cut%s’%i].ch3.mean()
mav_fist.loc[i-1,‘ch4’]=names[‘data1_cut%s’%i].ch4.mean()
mav_open=pd.DataFrame(columns=[‘ch1’,‘ch2’,‘ch3’,‘ch4’],index=[np.arange(21)])
for i in range(1,22):
mav_open.loc[i-1,‘ch1’]=names[‘data2_cut%s’%i].ch1.mean()
mav_open.loc[i-1,‘ch2’]=names[‘data2_cut%s’%i].ch2.mean()
mav_open.loc[i-1,‘ch3’]=names[‘data2_cut%s’%i].ch3.mean()
mav_open.loc[i-1,‘ch4’]=names[‘data2_cut%s’%i].ch4.mean()
mav_toright=pd.DataFrame(columns=[‘ch1’,‘ch2’,‘ch3’,‘ch4’],index=[np.arange(24)])
for i in range(1,25):
mav_toright.loc[i-1,‘ch1’]=names[‘data3_cut%s’%i].ch1.mean()
mav_toright.loc[i-1,‘ch2’]=names[‘data3_cut%s’%i].ch2.mean()
mav_toright.loc[i-1,‘ch3’]=names[‘data3_cut%s’%i].ch3.mean()
mav_toright.loc[i-1,‘ch4’]=names[‘data3_cut%s’%i].ch4.mean()
mav_toleft=pd.DataFrame(columns=[‘ch1’,‘ch2’,‘ch3’,‘ch4’],index=[np.arange(20)])
for i in range(1,21):
mav_toleft.loc[i-1,‘ch1’]=names[‘data4_cut%s’%i].ch1.mean()
mav_toleft.loc[i-1,‘ch2’]=names[‘data4_cut%s’%i].ch2.mean()
mav_toleft.loc[i-1,‘ch3’]=names[‘data4_cut%s’%i].ch3.mean()
mav_toleft.loc[i-1,‘ch4’]=names[‘data4_cut%s’%i].ch4.mean()
plt.figure(figsize=(20,5))
mav_fist_ax=plt.subplot2grid((1,4),(0,0),colspan=1)
mav_fist_ax.scatter(x=np.arange(20),y=mav_fist.ch1,c=‘r’)
mav_fist_ax.scatter(x=np.arange(20),y=mav_fist.ch2,c=‘g’)
mav_fist_ax.scatter(x=np.arange(20),y=mav_fist.ch3,c=‘b’)
mav_fist_ax.scatter(x=np.arange(20),y=mav_fist.ch4,c=‘y’)
mav_open_ax=plt.subplot2grid((1,4),(0,1),colspan=1)
mav_open_ax.scatter(x=np.arange(21),y=mav_open.ch1,c=‘r’)
mav_open_ax.scatter(x=np.arange(21),y=mav_open.ch2,c=‘g’)
mav_open_ax.scatter(x=np.arange(21),y=mav_open.ch3,c=‘b’)
mav_open_ax.scatter(x=np.arange(21),y=mav_open.ch4,c=‘y’)
mav_toright_ax=plt.subplot2grid((1,4),(0,2),colspan=1)
最后
不知道你们用的什么环境,我一般都是用的Python3.6环境和pycharm解释器,没有软件,或者没有资料,没人解答问题,都可以免费领取(包括今天的代码),过几天我还会做个视频教程出来,有需要也可以领取~
给大家准备的学习资料包括但不限于:
Python 环境、pycharm编辑器/永久激活/翻译插件
python 零基础视频教程
Python 界面开发实战教程
Python 爬虫实战教程
Python 数据分析实战教程
python 游戏开发实战教程
Python 电子书100本
Python 学习路线规划
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!