基于LabVIEW+python实现车牌识别智能系统的设计

一、系统应用介绍

二、主要实现技术原理

        2.1车辆检测

        2.2车牌定位

        2.3车牌进行字符分割

        2.4牌照字符识别方法  

三、技术实现

四、开发环境

        4.1LabVIEW介绍及数据采集卡

        4.2python介绍

五、程序及步骤

        5.1车牌类型识别及保存

        5.2读取识别图片

        5.3图片预处理

        5.4排除不属于车牌的矩形区域

        5.5颜色定位

        5.6缩小非车牌边界

        5.7测试

六、LabVIEW OCR实现车牌识别

        6.1OCR

        6.2前面板

一、系统应用介绍

        车牌识别系统(Vehicle License Plate Recognition,VLPR) 是指能够检测到受监控路面的车辆并自动提取车辆牌照信息(含汉字字符、英文字母、阿拉伯数字及号牌颜色)进行处理的技术。车牌识别是现代智能交通系统中的重要组成部分之一,应用十分广泛。它以数字图像处理、模式识别、计算机视觉等技术为基础,对摄像机所拍摄的车辆图像或者视频序列进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程。通过一些后续处理手段可以实现停车场收费管理,交通流量控制指标测量,车辆定位,汽车防盗,高速公路超速自动化监管、闯红灯电子警察、公路收费站等等功能。对于维护交通安全和城市治安,防止交通堵塞,实现交通自动化管理有着现实的意义。

         汽车牌照号码是车辆的唯一“身份”标识,牌照自动识别技术可以在汽车不作任何改动的情况下实现汽车“身份”的自动登记及验证,这项技术已经应用于公路收费、停车管理、称重系统、交通诱导、交通执法、公路稽查、车辆调度、车辆检测等各种场合。

二、主要实现技术原理

2.1车辆检测

        车辆检测可以采用埋地线圈检测、红外检测、雷达检测技术、视频检测等多种方式。采用视频检测可以避免破坏路面、不必附加外部检测设备、不需矫正触发位置、节省开支,而且更适合移动式、便携式应用的要求。

         其次系统进行视频车辆检测,需要具备很高的处理速度并采用优秀的算法,在基本不丢帧的情况下实现图像采集、处理。若处理速度慢,则导致丢帧,使系统无法检测到行驶速度较快的车辆,同时也难以保证在有利于识别的位置开始识别处理,影响系统识别率。因此,将视频车辆检测与牌照自动识别相结合具备一定的技术难度。

2.2车牌定位

        在自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定牌照区域是整个识别过程的关键。首先对采集到的视频图像进行大范围相关搜索,找到符合汽车牌照特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为牌照区域,并将其从图像中分离出来。

2.3车牌进行字符分割

        在完成牌照区域的定位后,再将牌照区域分割成单个字符,然后进行识别。字符分割一般采用垂直投影法。由于字符在垂直方向上的投影必然在字符间或字符内的间隙处取得局部最小值的附近,并且这个位置应满足牌照的字符书写格式、字符、尺寸限制和一些其他条件。利用垂直投影法对复杂环境下的汽车图像中的字符分割有较好的效果。

2.4牌照字符识别方法

        车牌照识别系统主要有基于模板匹配算法和基于人工神经网络算法。基于模板匹配算法首先将分割后的字符

### LabVIEW在交通测控项目中的应用 #### 1. 数据采集与监控系统 LabVIEW作为一种强大的图形化编程工具,在交通测控领域有着广泛的应用。通过使用NI硬件平台(如cRIO, myRIO),可以构建实时的数据采集与监控系统[^2]。这类系统能够有效地监测道路上车辆的速度、流量以及环境参数等重要信息。 ```python # Python伪代码展示如何读取传感器数据并发送到服务器端口 import socket from time import sleep def send_data_to_server(data): client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = ('localhost', 8080) try: client_socket.connect(server_address) message = str(data).encode() client_socket.sendall(message) finally: client_socket.close() while True: sensor_reading = get_sensor_value() # 获取传感器数值函数 formatted_output = format(sensor_reading) # 对数据进行格式化处理 send_data_to_server(formatted_output) sleep(5) # 每隔五秒发送一次数据 ``` 此部分主要涉及利用LabVIEW编写VI来实现对现场设备状态的持续跟踪记录,并可通过网络传输至远程数据中心作进一步分析处理[^4]。 #### 2. 信号灯控制逻辑设计 针对城市交叉路口红绿灯管理需求,采用LabVIEW配合FPGA技术可搭建高效的智能交通管理系统。该方案不仅支持多路输入输出接口连接各类探测装置,还允许工程师们灵活调整算法以适应不同场景下的通行规则变化。 #### 3. 车辆识别与统计功能集成 借助于图像处理库的支持,LabVIEW同样适用于车牌自动识别(LPR)任务当中。结合机器视觉组件完成目标检测后,再经由串行通信协议向后台数据库提交匹配结果用于后续查询服务。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值