- 博客(4)
- 收藏
- 关注
原创 神经网络与深度学习-4
国家编码从1开始, 1~197,因为实际国籍有可能不填(对应0)。FCN中第6、7、8层都是通过1 × 1卷积得到的,第6层的输出是4096 × 7 × 7, 第7层的输出是4096 × 7 × 7 ,第8层的输出是1000 × 7 × 7,即1000个大小是 7 × 7的特征图(称为heatmap)。文 本 : ['twinkled', 'and', 'his', 'usually', 'pale', 'face', 'was', 'flushed', 'and', 'animated', 'the']
2023-04-16 19:59:01 163 1
原创 神经网络与深度学习-3
残差操作这一思想起源于论文《Deep Residual Learning for Image Recognition》,文章发现,如果存在某个K层的网络f是当前最优网络,那么可以构造一个更深的网络,其最后几层仅是该网络f第K层输出的恒等映射(Identity Mapping),就可以取得与f一致的结果;总而言之,与浅层网络相比,更深的网络的表现不应该更差。残差网络:在普通网络的基础上,将浅层的激活项通过支路直接 传向深层,克服深层神经网络中梯度消失的问题,为训练极深的 神经网络提供便利。
2023-04-01 16:37:10 102
原创 神经网络与深度学习-2
池化层均采用最大池化,选用ReLU作为非线性环节激活函数,网络规模扩大,参数数量接近6000万,出现了“多个卷积层+一个池化层”的结构,随网络深入,宽、高衰减,通道数增加。当卷积窗口滑动到新一个位置时,包含在该窗口中的部分张量与卷积核张量进行按元素相乘,得到的张量再求和得到一个单一的标量值,由此我们得出了这一位置的输出张量值。层数较浅,参数数量小(约为6万)。由于要处理的数据是图像,数据量较大,因此卷积神经网络不同层之间的节点只有局部连接,这种结构将会减小网络的参数量,能够提高运算速度和预防过拟合的出现。
2023-03-26 19:24:06 105
原创 神经网络与深度学习-1
回归(regression)是能为一个或多个自变量与因变量之间关系建模的一类方法。 在自然科学和社会科学领域,回归经常用来表示输入和输出之间的关系。线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,运用十分广泛。 在机器学习领域中的大多数任务通常都与预测(prediction)有关。 当我们想预测一个数值时,就会涉及到回归问题。 常见的例子包括:预测价格(房屋、股票等)、预测住院时间(针对住院病人等)、 预测需求(零售销量等)。 但不是所有的预测都
2023-03-19 11:55:36 108
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人