最长回文子串

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ssjhust123/article/details/7979541

题目描述

给定一个字符串,找出该字符串的最长回文子串。回文字符串指的就是从左右两边看都一样的字符串,如aba,cddc都是回文字符串。字符串abbacdc存在的回文子串有abba和cdc,因此它的最长回文子串为abba。


一个容易犯的错误

初看这个问题可能想到这样的方法:对字符串S逆序得到新的字符串S',再求S和S'的最长公共子串,这样求出的就是最长回文子串。

如S="caba", S'="abac",则S和S'的最长公共子串为aba,这个是正确的。

但是如果S = “abacdfgdcaba”, S’ = “abacdgfdcaba”,则S和S'的最长公共子串为abacd,显然这不是回文字符串。因此这种方法是错误的。

 

判定一个字符串是否是回文字符串

要找出最长回文子串,首先要解决判断一个字符串是否是回文字符串的问题。最显而易见的方法是设定两个变量i和j,分别指向字符串首部和尾部,比较是否相等,然后i++,j--,直到i >= j为止。下面的代码是判断字符串str[i, j]是不是回文字符串,即字符串str从i到j的这一段子串是否是回文字符串,在后面会用到这个方法。

bool isPalindrome(string str, int start, int end) 
{
	while (start < end) {
		if (str[start] != str[end])
			return false;
		++start, --end;
	}
	return true;
}

蛮力法求最长回文子串

蛮力法通过对字符串所有子串进行判断,如果是回文字符串,则更新最长回文的长度。因为长度为N的字符串的子串一共可能有(1+N)*N/2个,每次判断子串需要O(N)的时间,所以一共需要O(N^3)时间来求取最长回文子串。

string longestPalindrome(string str) 
{
	int len = str.length(), max = 1; 
	int start=0;
        /*遍历字符串所有的子串,若子串为回文字符串则更新最长回文的长度*/
        for (int i=0; i<len; i++) {
		for (int j=i; j<len; j++) {
			if (isPalindrome(str, i, j)) { //如果str[i,j]是回文,则判断其长度是否大于最大值,大于则更新长度和位置
				int pLen = j - i + 1;
				if (pLen > max) {
					start = i;  //更新最长回文起始位置
					max = pLen; //更新最长回文的长度
				}
			}
		}
	}
	return str.substr(start, max); 
}

动态规划法求最长回文子串

因为蛮力法判定回文的时候需要很多重复的计算,所以可以通过动态规划法来改进该算法。假定我们知道“bab”是回文,则“ababa”也一定是回文。

定义P[i, j] = true 如果子串S[i, j]是回文字符串。
则 P[i, j] <- (P[i+1, j-1] && S[i]==S[j])。

Base Case如下:

P[ i, i ] ← true
P[ i, i+1 ] ← ( Si = Si+1 )
据此动态规划方法的代码如下,该方法的时间复杂度为O(N^2),空间复杂度为O(N^2)。

string longestPalindromeDP(string s)
{
	int n = s.length();
	int longestBegin = 0, maxLen = 1;
	bool table[1000][1000] = {false};
	for (int i=0; i<n; i++)
		table[i][i] = true;
	for (int i=0; i<n-1; i++) {
		if (s[i] == s[i+1]) {
			table[i][i+1] = true;
			longestBegin = i;
			maxLen = 2;
		}
	}
        /*依次求table[i][i+2]...table[i][i+n-1]等*/
	for (int len=3; len<=n; ++len) {
		for (int i=0; i<n-len+1; ++i) {
			int j = i + len - 1;
			if (s[i]==s[j] && table[i+1][j-1]) {
				table[i][j] = true;
				longestBegin = i;
				maxLen = len;
			}
		}
	}
	return s.substr(longestBegin, maxLen);
}


 

中心法求最长回文子串

还有一个更简单的方法可以使用O(N^2)时间、不需要额外的空间求最长回文子串。我们知道回文字符串是以字符串中心对称的,如abba以及aba等。一个更好的办法是从中间开始判断,因为回文字符串以字符串中心对称。一个长度为N的字符串可能的对称中心有2N-1个,至于这里为什么是2N-1而不是N个,是因为可能对称的点可能是两个字符之间,比如abba的对称点就是第一个字母b和第二个字母b的中间。因此可以依次对2N-1个中心点进行判断,求出最长的回文字符串即可。根据该思路可以写出下面的代码。

string expandAroundCenter(string s, int l, int r)
{
	int n = s.length();
	while (l>=0 && r<=n-1 && s[l]==s[r]) {
		l--, r++;
	}
	return s.substr(l+1, r-l-1);
}

string longestPalindrome3(string s)
{
	int n = s.length();
	if (n == 0) return "";
	string longest = s.substr(0, 1);
	for (int i=0; i<n; i++) {
		string p1 = expandAroundCenter(s, i, i); //以位置i为中心的最长回文字符串
		if (p1.length() > longest.length())
			longest = p1;

		string p2 = expandAroundCenter(s, i, i+1); //以i和i+1之间的位置为中心的最长回文字符串
		if (p2.length() > longest.length())
			longest = p2;
	}
	return longest;
}


 



 


没有更多推荐了,返回首页