5、PointNeXt

5、PointNeXt

关于PointNeXt实际上仅仅是在PointNet++的基础上做了一些改进,从它的全称就可以看出,Revisiting PointNet++ with Improved Training and Scaling Strategies,在PointNet++的基础上,引入了反向残差瓶颈设计和可分离 MLP,从而实现了高效的模型扩展。在数据增强方面尝试使用更多的方法。

改进点

从本质上来说,没有改变PointNet++的架构图,只是在原来的基础上加上了反向残差瓶颈设计和可分离 MLP。

  1. 在数据增强方面,采用了多种方式进行数据增强,包括点重采样数据缩放,并将整个场景加载为输入,随机旋转,随机缩放,平移到移位点云,抖动向每个点添加独立的噪声,高度附加,颜色自动对比度自动调整颜色对比度[56],颜色丢弃随机用零值替换颜色等。
  2. 模型架构方面,在原来的基础上加上了反向残差瓶颈设计和可分离 MLP,损失函数、优化器、学习率调度器和超参数等优化技术对神经网络的性能也至关重要。一般来说,具有标签平滑、AdamW 和余弦衰减的交叉熵可以很好地优化各种任务中的模型。
架构图对比

从下面两幅图的对比可以看出,所提出的 PointNeXt 和经典 PointNet++ 之间的差异以红色边界突出显示,就是在数据处理之前增加了数据增强操作,以及在每个SA层后面加上了反向残差瓶颈设计(InvResMLP)和可分离 MLP。

PointNet++架构图

在这里插入图片描述

PointNeXt架构图

在这里插入图片描述

反向残差瓶颈设计(InvResMLP)

概念:最早由 MobileNetV2 引入,主要思想是通过先扩展通道数,再通过深度可分离卷积减少计算量,最后压缩回去。这个结构能够在保持模型性能的同时降低计算复杂度。它包括一个倒置的瓶颈结构:输入先通过扩展层增加通道数,接着通过深度卷积进行计算,最后再通过线性层将通道数减少。

PointNeXt将这个机制引入到PointNeXt中来减少计算量,并且使特征提取更加丰富。

在这里插入图片描述

可分离 MLP

局部特征提取:PointNeXt 会对点云的局部邻域进行采样,并使用类似于 MLP 的层来对局部点进行特征提取。传统的 MLP 会对输入的所有维度进行联合操作,但可分离 MLP 会将输入的特征进行维度分离,分别对空间维度和通道维度进行处理,类似于卷积神经网络中的深度可分离卷积。

维度分离的 MLP:这种分离使得计算复杂度显著降低,同时保留了特征提取的能力。尤其是在处理高维点云特征时,使用可分离 MLP 能够有效减少计算量,并提升模型的效率。

深度可分离卷积:

  • 先depthwise深度卷积主要宽和高方向信息的卷积,采用3个3x3x1的卷积核,每个channel对应一个卷积核,红色通道对应红色卷积核卷积,最终得到三通道的featuremap。
  • 后pointwise逐点卷积使用1x1x3的卷积核进行卷积,计算三通道的值累加,实现多通道信息融合。
调整后的影响

使用浅绿色、紫色、黄色和粉色背景颜色分别表示数据增强、优化技术、感受野缩放和模型缩放之后的效果对比图

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值