- 博客(89)
- 收藏
- 关注
原创 体操动作识别系统源码分享
数据集信息展示在现代体育科学与人工智能的交叉领域,体操动作识别系统的开发与应用正逐渐成为研究的热点。为此,我们构建了一个名为“CaliAI_v1.0.0”的数据集,旨在为改进YOLOv8模型在体操动作识别方面的性能提供支持。该数据集包含了8个不同的体操动作类别,涵盖了从基础到高级的多种体操姿势,具有广泛的应用潜力和研究价值。
2024-10-08 14:10:52 970
原创 外国钞票面值检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“budamonl”的数据集,旨在改进YOLOv8模型在外国钞票面值检测系统中的应用。该数据集的设计考虑到了多样性和复杂性,以确保模型能够在实际应用中表现出色。数据集包含9个类别,分别是:100k、10k、1k、200k、20k、2k、500k、50k和5k。这些类别涵盖了不同面值的钞票,能够为模型提供丰富的训练样本,从而提高其识别精度和鲁棒性。
2024-10-08 11:04:53 1242
原创 手术器械检测系统源码分享
数据集信息展示在手术器械检测系统的研究中,数据集的选择与构建至关重要。本研究采用的数据集名为“BHQ_OFA2”,其设计旨在为改进YOLOv8模型提供高质量的训练数据,以实现更精准的手术器械识别与分类。该数据集包含32个类别的手术器械,涵盖了广泛的外科手术工具,能够为模型的训练提供丰富的样本和多样化的特征信息。
2024-10-07 17:52:30 1113
原创 杠铃检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Barbell”的数据集,以训练和改进YOLOv8模型在杠铃检测任务中的性能。该数据集专注于杠铃这一特定类别,旨在为计算机视觉领域提供高质量的训练样本,以提升目标检测的准确性和鲁棒性。数据集的类别数量为1,唯一的类别名称为“barbell”,这意味着所有的训练样本均围绕这一特定物体展开,确保模型在识别和定位杠铃时能够获得充分的学习和优化。“Barbell”数据集的构建过程经过精心设计,旨在涵盖各种场景和条件下的杠铃图像。
2024-10-07 14:47:09 1080
原创 红外画面空中目标检测系统源码分享
数据集信息展示在现代计算机视觉领域,尤其是在空中目标检测的研究中,数据集的构建与选择至关重要。本研究所采用的数据集名为“Air Vehicles”,专门针对红外画面中的空中目标检测任务而设计。该数据集包含四个主要类别,分别是“Airplane”(飞机)、“Bird”(鸟类)、“Drone”(无人机)和“Helicopter”(直升机)。这些类别的选择不仅涵盖了多种常见的空中目标,还反映了当前无人机技术和航空活动的快速发展。
2024-10-02 14:06:06 1415
原创 交通场景多目标检测系统源码分享
数据集信息展示在本研究中,我们使用了“A2D2-AUDI-Dataset”作为训练数据集,以改进YOLOv8的交通场景多目标检测系统。该数据集专为自动驾驶和交通场景分析而设计,包含丰富的多样化交通对象,能够有效支持模型的训练和评估。数据集分为训练集、验证集和测试集,分别存储在指定的路径下:训练集位于“…/train/images”,验证集在“…/valid/images”,而测试集则存放于“…/test/images”。
2024-10-01 21:41:24 1540
原创 产品包装检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Zydus Wellness”的数据集,以改进YOLOv8模型在货架产品包装检测系统中的应用。该数据集包含49个类别,涵盖了广泛的产品类型,旨在提高计算机视觉系统在实际零售环境中的识别能力。通过对这一数据集的深入分析和应用,我们希望能够提升产品包装的自动检测精度,从而为零售商和消费者提供更高效的购物体验。“Zydus Wellness”数据集的类别多样,涉及多个领域的产品,包括营养补充品、护肤品和调味品等。
2024-09-28 13:45:19 1108
原创 瓶子类型检测系统源码分享
数据集信息展示在现代计算机视觉领域,物体检测技术的进步依赖于高质量的数据集。为改进YOLOv8的瓶子类型检测系统,我们选用了名为“yadhukrishna”的数据集。该数据集专注于多种瓶子类型的识别,涵盖了五个主要类别,分别为“39”、“bottle”、“plastic”、“t_bottle”和“waterbottle”。这些类别的选择不仅反映了瓶子在日常生活中的多样性,也为训练模型提供了丰富的样本和多样的场景。“yadhukrishna”数据集的设计旨在满足深度学习模型对数据多样性的需求。
2024-09-28 11:25:06 1144
原创 羽毛类型检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Vocdevkit”的数据集,以支持改进YOLOv8的羽毛类型检测系统的训练与验证。该数据集专注于羽毛的分类,包含了两种主要类别:羽绒(daunen)和羽毛(federn)。通过精心标注的图像数据,Vocdevkit为模型提供了丰富的样本,确保了训练过程的高效性和准确性。Vocdevkit数据集的构建旨在为计算机视觉领域的研究者提供一个标准化的测试平台,尤其是在物体检测和分类任务中。数据集中包含的图像经过严格筛选,确保每一张图像都能有效代表其对应的类别特征。
2024-09-27 22:37:52 1284
原创 卡通角色检测系统源码分享
数据集信息展示在当今计算机视觉领域,卡通角色检测的研究逐渐成为一个引人注目的方向。为此,我们构建了一个名为“Cartoon Character Detection”的数据集,旨在为改进YOLOv8模型提供高质量的训练数据。该数据集包含11个类别,涵盖了多种经典的卡通角色,具体类别包括数字0至5,以及三个知名角色:Dee Dee、Jack、Joey、Marky和Oggy。这些类别的选择不仅反映了卡通文化的多样性,也为模型的训练提供了丰富的样本。数据集的构建过程经历了多个阶段,首先是角色的选择。
2024-09-27 20:17:47 977
原创 安全防护装备检测系统源码分享
数据集信息展示在构建改进YOLOv8的安全防护装备检测系统的过程中,APD1.0数据集作为核心训练数据集,发挥了至关重要的作用。APD1.0数据集专门设计用于识别和分类各种安全防护装备,旨在提升工作场所的安全性和防护意识。该数据集包含15个类别,涵盖了个人防护装备的多样性以及在不同情况下的使用状态,确保了模型训练的全面性和有效性。
2024-09-27 17:57:34 1339
原创 曲线图异常波形检测系统源码分享
数据集信息展示在现代建筑能耗管理和监测领域,异常波形检测技术正逐渐成为提高能效和降低运营成本的重要工具。本研究所采用的数据集名为“Vision-based-building-energy-data-outlier-detection”,专门用于训练和改进YOLOv8模型,以实现对建筑能耗数据中异常波形的精准检测。该数据集的设计旨在为研究人员和工程师提供一个高质量的基础,以便在实际应用中识别和处理能耗数据中的异常情况,从而优化建筑能耗管理策略。
2024-09-26 18:48:09 948
原创 弹簧状态检测系统源码分享
数据集信息展示在现代工业自动化和智能制造领域,弹簧状态检测作为关键的质量控制环节,越来越受到重视。为了提升弹簧状态检测系统的准确性和效率,我们采用了名为“tsc-rr”的数据集,旨在训练和改进YOLOv8模型,以实现对弹簧状态的精准识别和分类。该数据集专门设计用于捕捉和分析弹簧在不同状态下的特征,包含了丰富的样本和多样化的场景,以满足深度学习模型的训练需求。“tsc-rr”数据集包含三种主要类别,分别是“half_spring”、“spring”和“spring_out_of_place”。
2024-09-26 16:27:59 524
原创 交通锥检测系统源码分享
数据集信息展示在现代交通管理和智能交通系统的发展中,交通锥的检测与识别显得尤为重要。为了提升YOLOv8在交通锥检测任务中的性能,我们构建了一个专门的数据集,命名为“traffic_cone”。该数据集旨在为交通锥的自动检测提供高质量的训练样本,进而推动相关技术的进步和应用。“traffic_cone”数据集包含三种主要类别,分别是“blue”(蓝色交通锥)、“cone”(标准交通锥)和“yellow”(黄色交通锥)。
2024-09-26 14:07:49 1041
原创 瓷砖缺陷检测系统源码分享
数据集信息展示在本研究中,我们使用的“Tile image”数据集专门用于训练和改进YOLOv8模型,以实现高效的瓷砖缺陷检测系统。该数据集包含了多种瓷砖缺陷的图像,旨在帮助机器学习模型准确识别和分类不同类型的瓷砖损坏情况。数据集的类别数量为三,具体包括“Spalling”(剥落)、“buckled”(翘曲)和“crack”(裂缝)。这三种缺陷类型是瓷砖在使用过程中最常见的损坏形式,对瓷砖的美观性和结构完整性均有显著影响,因此在实际应用中具有重要的检测价值。
2024-09-25 23:24:15 1061
原创 电路板上电子元件检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“test2 pcb real”的数据集,旨在改进YOLOv8模型在电路板上电子元件检测系统中的表现。该数据集专门为电子元件的识别与分类而设计,包含了多种常见的电子元件类型,以支持模型的训练和优化。通过精心标注和丰富的样本,数据集为模型提供了必要的多样性和复杂性,使其能够在实际应用中更有效地识别和分类电路板上的元件。
2024-09-25 21:03:50 1049
原创 寿司检测系统源码分享
数据集信息展示在现代计算机视觉领域,数据集的质量和多样性对模型的训练效果至关重要。本次研究中,我们采用了名为“sushi_clone”的数据集,旨在改进YOLOv8的寿司检测系统。该数据集专门为寿司检测任务而设计,提供了丰富的样本和多样化的场景,以确保模型在实际应用中的鲁棒性和准确性。“sushi_clone”数据集包含两个类别,分别为“无”(-)和“寿司”(Sushi)。虽然类别数量相对较少,但每个类别的样本都经过精心挑选和标注,确保了数据的高质量和准确性。
2024-09-25 18:43:29 1171
原创 液体泄漏泼溅检测系统源码分享
数据集信息展示在现代工业和环境监测领域,液体泄漏泼溅的及时检测至关重要。为此,我们构建了一个专门用于训练改进YOLOv8的液体泄漏泼溅检测系统的数据集,命名为“Spill Detection”。该数据集旨在为研究人员和开发者提供一个高质量的训练基础,以提升液体泄漏检测的准确性和效率。“Spill Detection”数据集包含了丰富的液体泄漏场景,专注于一种主要类别:液体泼溅。该数据集的类别数量为1,具体类别列表为“Spill”。这一设计使得数据集在处理液体泄漏检测时更加专注,便于模型的训练和优化。
2024-09-25 14:23:13 925
原创 智能养殖场人机交互检测系统源码分享
数据集信息展示在智能养殖场的人机交互检测系统的研究中,数据集的选择与构建至关重要。本项目所使用的数据集名为“smart poultry farm litter raking”,专门针对养殖场内人机交互的场景进行设计。该数据集的构建旨在提升YOLOv8模型在智能养殖环境中的检测精度和实时性,确保系统能够有效识别并区分人类操作员与自动化设备之间的互动。该数据集包含两类主要对象,分别为“human”和“machine”。
2024-09-25 12:02:49 1120
原创 手语手势识别系统源码分享
数据集信息展示在手语手势识别领域,数据集的构建与选择至关重要。本研究采用的数据集名为“sign language”,其主要目的是为了训练和改进YOLOv8模型,以实现更高效的手语手势识别系统。该数据集专注于两种特定的手语手势,分别为字母“A”和字母“Z”。这两种手势不仅在手语交流中具有基础性和重要性,而且为模型的训练提供了良好的起点,使其能够在后续的扩展中涵盖更多的手势。数据集的类别数量为2,分别对应于手语字母“A”和“Z”。在手语中,这两个字母的手势形态具有明显的特征,能够有效地帮助模型学习和识别。
2024-09-24 20:02:42 956
原创 安全带检测系统源码分享
数据集信息展示在现代智能交通系统中,安全带的检测与识别是提升车辆安全性的重要环节。为此,构建一个高效的安全带检测系统显得尤为重要。本研究所使用的数据集名为“Seatbelt”,专门用于训练和改进YOLOv8模型,以实现对安全带的精准检测。该数据集的设计旨在提供丰富的样本,以帮助模型学习在不同场景下的安全带特征,从而提高其在实际应用中的准确性和鲁棒性。“Seatbelt”数据集包含了多样化的图像数据,涵盖了各种车辆内部环境和不同类型的安全带。
2024-09-24 17:42:21 1126
原创 球体检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Robocon 2024”的数据集,以支持对YOLOv8模型的改进,专注于球体检测系统的训练和优化。该数据集包含了丰富的图像数据,旨在提升模型在特定场景下的检测精度和效率。数据集的类别数量为2,具体类别包括“ball”(球体)和“silo”(筒仓),这两个类别的选择不仅反映了实际应用中的重要性,也为模型的训练提供了多样化的目标检测任务。“Robocon 2024”数据集的构建考虑到了多种环境和条件,以确保模型在不同场景下的鲁棒性。
2024-09-24 15:21:59 1148
原创 焊接缺陷检测系统源码分享
数据集信息展示在焊接缺陷检测领域,数据集的质量和多样性直接影响到模型的训练效果和最终的检测性能。本研究所使用的数据集名为“Resistance_Spot_Welding”,专门针对电阻点焊过程中的缺陷进行标注和分类。该数据集包含八个不同的类别,分别为“copper”、“edge”、“fake”、“mutilation”、“normal”、“overlap”、“splash”和“twist”。这些类别涵盖了焊接过程中可能出现的各种缺陷,提供了丰富的样本以供模型学习和识别。
2024-09-24 13:01:38 929
原创 拼图缺口形状检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“puzzleconvex”的数据集,旨在训练和改进YOLOv8模型,以实现高效的拼图缺口形状检测。该数据集专注于一种特定的形状类别,即“convex”,并为该类别提供了丰富的样本数据,以便模型能够准确识别和分类拼图中的凸形缺口。“puzzleconvex”数据集的设计理念是为了满足拼图形状检测的需求,尤其是在凸形缺口的识别上。该数据集包含了多种不同的拼图样本,每个样本都经过精心标注,确保在训练过程中能够提供高质量的输入数据。
2024-09-24 10:41:15 860
原创 插座空置状态检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“Project testing k”的数据集,以训练和改进YOLOv8模型,用于插座空置状态的检测系统。该数据集专门设计用于捕捉和识别多种插座状态,具有丰富的多样性和高质量的标注,能够有效支持模型的训练和评估。
2024-09-23 23:27:45 1112
原创 箭头与数字识别系统源码分享
数据集信息展示在本研究中,我们使用了名为“polat-dart-solver”的数据集,以训练和改进YOLOv8模型,专注于箭头与数字的识别系统。该数据集的设计旨在支持高效的图像识别任务,尤其是在体育和游戏场景中,涉及到飞镖运动的应用。数据集包含30个类别,涵盖了从数字“1”到“29”的所有单个数字,以及“arrow”这一类目,代表箭头的形状和方向。这种丰富的类别设置为模型提供了多样化的训练样本,能够有效提升其在复杂场景下的识别能力。在数据集的构建过程中,研究团队确保了样本的多样性和代表性。
2024-09-23 21:07:09 1235
原创 植物检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“plant detect”的数据集,以改进YOLOv8的植物检测系统。该数据集专注于植物的识别与分类,具有独特的结构和丰富的样本,为深度学习模型的训练提供了坚实的基础。数据集的类别数量为1,具体类别为“plant”,这意味着该数据集专注于植物这一单一类别的检测与识别。这种单一类别的设置,虽然在表面上看似简单,但实际上为模型的专注性和准确性提供了极大的提升空间。
2024-09-23 18:46:33 877
原创 夜间红外图宠物检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“pet”的数据集,旨在训练和改进YOLOv8模型,以实现高效的夜间红外图像宠物检测系统。该数据集专门设计用于支持计算机视觉领域的相关项目,尤其是在宠物检测这一特定应用场景中。数据集的构建考虑到了多种环境因素,尤其是夜间低光照条件下的图像采集,确保模型能够在实际应用中具备良好的性能。“pet”数据集包含5个类别,虽然具体的类别名称在数据集中并未详细列出,但我们可以推测这些类别可能涵盖了不同种类的宠物,如猫、狗等,或是与宠物相关的其他对象。
2024-09-23 16:26:03 1239
原创 蘑菇成熟待收检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“Oyster Mushroom”的数据集,以训练和改进YOLOv8模型,旨在实现蘑菇成熟待收检测系统的高效性和准确性。该数据集专注于对不同成熟阶段的牡蛎蘑菇进行分类,具体包括三个主要类别:未成熟(not ready to harvest)、准备收割(prepare to harvest)和成熟(ready to harvest)。这些类别的划分不仅反映了蘑菇生长的不同阶段,也为农民和农业工作者提供了科学依据,以便于他们在最佳时机进行收割,从而提高产量和质量。
2024-09-23 14:05:28 1304
原创 江上场景目标检测系统源码分享
项目参考项目来源研究背景与意义随着全球航运业的快速发展,江上交通的安全与效率愈发受到重视。江上场景的目标检测不仅涉及到船舶的监控与管理,还关系到水上交通的安全、环境保护及资源的合理利用。近年来,计算机视觉技术的飞速进步为这一领域提供了新的解决方案,尤其是深度学习技术的应用,使得目标检测的准确性和实时性得到了显著提升。在众多目标检测算法中,YOLO(You Only Look Once)系列模型因其高效性和准确性而受到广泛关注。
2024-09-22 15:58:18 1526
原创 文档布局内容检测系统源码分享
项目参考项目来源研究背景与意义随着信息技术的迅猛发展,文档的数字化和自动化处理已成为各行业提升工作效率的重要手段。文档布局内容检测系统的研究,旨在通过计算机视觉技术自动识别和解析文档中的各种元素,从而实现对文档内容的智能化管理与处理。近年来,深度学习技术的快速进步为文档布局分析提供了新的机遇,其中基于YOLO(You Only Look Once)系列模型的目标检测方法因其高效性和准确性而备受关注。
2024-09-22 13:38:22 1061
原创 救生圈检测系统源码分享
数据集信息展示在现代计算机视觉领域,数据集的质量和多样性直接影响到模型的训练效果和最终性能。为此,我们选用了“Note Detection FRC 2024”数据集,旨在改进YOLOv8的救生圈检测系统。该数据集专为救生圈检测任务而设计,提供了丰富的标注信息和多样的样本,以支持模型的有效训练和评估。“Note Detection FRC 2024”数据集的类别数量为1,具体类别名称为“NoteFinderMassDataset - v3 2024-01-13 6-41pm”。
2024-09-21 23:40:41 1198
原创 表盘针头位置检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“Needle Base Tip Min Max”的数据集,以支持改进YOLOv8模型在表盘针头位置检测系统中的应用。该数据集专门设计用于捕捉和标注表盘上针头的不同位置,具有重要的实际意义,尤其是在自动化检测和精确测量领域。数据集的构建旨在提供多样化的样本,以便模型能够学习到针头在不同状态下的特征,从而提高检测的准确性和鲁棒性。
2024-09-21 12:28:27 1059
原创 化学分子结构检测系统源码分享
数据集信息展示在化学分子结构检测领域,数据集的构建和选择至关重要。为改进YOLOv8的化学分子结构检测系统,我们选用了名为“MoleculeParts”的数据集。该数据集专注于化学分子的不同组成部分,旨在为深度学习模型提供丰富的训练样本,以提高其在分子结构识别中的准确性和鲁棒性。
2024-09-20 11:48:48 1232
原创 射击靶标检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“MARS(CombinedDatasets)”的数据集,以支持对YOLOv8射击靶标检测系统的改进与优化。该数据集专门设计用于提升计算机视觉模型在射击靶标识别任务中的性能,尤其是在复杂环境下的目标检测能力。MARS数据集的构建基于多种来源的合成数据,旨在提供一个全面而多样化的训练基础,以便模型能够在不同场景和条件下进行有效的靶标检测。MARS数据集的类别数量为1,具体类别为“TransTar_II”。
2024-09-20 09:26:03 1462
原创 窗户检测系统源码分享
数据集信息展示在本研究中,我们使用了名为“lll”的数据集,旨在改进YOLOv8的窗户检测系统。该数据集专门针对窗户检测任务进行了精心设计,具有独特的结构和内容,以确保模型能够在各种环境下有效识别窗户。数据集的类别数量为1,具体类别列表中包含了“Window-detection - v1 2023-08-15 11-12pm”,这一命名不仅标识了数据集的用途,还提供了创建的时间信息,便于追踪和版本管理。“lll”数据集的构建过程经过了严格的筛选和标注,确保了数据的高质量和高准确性。
2024-09-19 19:26:59 1354
原创 叶片检测系统源码分享
数据集信息展示在本研究中,我们采用了名为“Leaf OD OVERALL”的数据集,以改进YOLOv8的叶片检测系统。该数据集专注于植物叶片的检测,旨在为农业、园艺及生态研究等领域提供强有力的支持。数据集的类别数量为1,具体类别为“Leaf”,这表明该数据集专注于叶片的识别与检测,简化了模型的训练过程,使其能够更高效地学习到叶片的特征。“Leaf OD OVERALL”数据集的构建过程经过精心设计,确保了数据的多样性和代表性。
2024-09-19 10:11:16 995
原创 武器检测系统源码分享
数据集信息展示在现代计算机视觉领域,物体检测技术的进步为安全监控、公共安全以及智能安防系统的发展提供了强有力的支持。为此,构建一个高效、准确的武器检测系统显得尤为重要。本项目旨在通过改进YOLOv8模型,专注于刀具的检测与识别,因此我们选用了名为“knife-detection”的数据集。该数据集专门针对刀具的识别任务,具备良好的应用前景。“knife-detection”数据集的设计初衷是为了解决在各种环境中对刀具的准确检测问题。
2024-09-18 23:36:06 1047
原创 球类目标检测系统源码分享
数据集信息展示在现代计算机视觉领域,目标检测技术的不断进步为各类应用提供了强大的支持。为了推动这一领域的发展,特别是在球类目标检测方面,我们构建了一个名为“jrmpssapp”的数据集。该数据集专门用于训练和改进YOLOv8模型,以实现对不同颜色球类的精准检测。数据集的设计考虑到了多样性和实用性,确保能够在多种场景下有效识别目标。“jrmpssapp”数据集包含三种主要类别的球类目标,分别是绿色球、橙色球和黄色球。这三种颜色的选择不仅涵盖了常见的球类,还能够为模型提供丰富的视觉特征,以增强其泛化能力。
2024-09-18 21:14:50 1527
原创 飞机表面缺陷检测系统源码分享
数据集信息展示在现代航空工业中,飞机表面缺陷的检测与识别至关重要。为此,我们采用了名为“Innovation Hangar v2”的数据集,以改进YOLOv8模型在飞机表面缺陷检测系统中的表现。该数据集专门针对飞机表面缺陷的多样性与复杂性进行了精心设计,涵盖了五种主要的缺陷类别,分别是裂纹(crack)、凹陷(dent)、缺失的螺栓头(missing-head)、漆面剥落(paint-off)和划痕(scratch)。
2024-09-18 17:58:37 1123
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人