【Python深度学习】Python全栈体系(二十八)

深度学习

第三章 损失函数与梯度下降

一、损失函数

1. 什么是损失函数?
  • 损失函数(Loss Function),也有称之为代价函数(Cost Function),用来度量预测值和实际值之间的差异。

E = y − y ′ E = y - y' E=yy

2. 损失函数的作用
  • 度量决策函数f(x)和实际值之间的差异。
  • 作为模型性能参考。损失函数值越小,说明预测输出和实际结果(也称期望输出)之间的差值就越小,也就说明我们构建的模型越好。学习的过程,就是不断通过训练数据进行预测,不断调整预测输出与实际输出差异,使得损失值最小的过程
3. 常用损失函数
3.1 均方误差(Mean square error)损失函数
  • 均方误差是回归问题常用的损失函数,它是预测值与目标值之间差值的平方和,其公式和图像如下所示:
    在这里插入图片描述
3.2 交叉熵(Cross Entropy)
  • 交叉熵是Shannon信息论中一个重要概念,主要用于度量两个概率分布间的差异性信息,在机器学习中用来作为分类问题的损失函数。假设有两个概率分布, t k t_k tk y k y_k yk其交叉熵函数公式及图形如下所示:
    在这里插入图片描述

二、梯度下降

1. 什么是梯度?
  • 梯度(gradient)是一个向量(矢量,有方向),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大。损失函数沿梯度相反方向收敛最快(即能最快找到极值点)。当梯度向量为零(或接近于零),说明损失函数到达一个极小值点,模型准确度达到一个极大值点。
    在这里插入图片描述
2. 梯度下降
  • 通过损失函数,我们将“寻找最优参数”问题,转换为了“寻找损失函数最小值”问题。寻找步骤:
    • 损失是否足够小?如果不是,计算损失函数的梯度。
    • 按梯度的反方向走一小步,以缩小损失。
    • 循环到第一步
  • 这种按照负梯度不停地调整函数权值的过程就叫做“梯度下降法”。通过这样的方法,改变每个神经元与其他神经元的连接权重及自身的偏置,让损失函数的值下降得更快,进而将值收敛到损失函数的某个极小值。
3. 导数
  • 导数定义:所谓导数,就是用来分析函数“变化率”的一种度量。其公式为:
    在这里插入图片描述
  • 导数的含义:反映变化的剧烈程度(变化率)
    在这里插入图片描述
4. 偏导数

在这里插入图片描述

5. 学习率
  • 如果在梯度下降过程中,每次都按照相同的步幅收敛,则可能错过极值点(下图左),所以每次在之前的步幅减小一定比率,这个比率称之为“学习率”(下图右)。
    在这里插入图片描述
6. 梯度递减训练法则

在这里插入图片描述

7. 梯度下降算法
7.1 批量梯度下降
  • 批量梯度下降法(Batch Gradient Descent,BGD)是最原始的形式,它是指在每一次迭代时使用所有样本来进行梯度的更新。
  • 优点:
    • 一次迭代是对所有样本进行计算,此时利用矩阵进行操作,实现了并行。
    • 由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。当目标函数为凸函数时,BGD一定能够得到全局最优。
  • 缺点:
    • 当样本数目 m 很大时,每迭代一步都需要对所有样本计算,训练过程会很慢。
7.2 随机梯度下降
  • 随机梯度下降法(Stochastic Gradient Descent,SGD)每次迭代使用一个样本来对参数进行更新,使得训练速度加快。
  • 优点:
    • 由于不是在全部训练数据上的损失函数,而是在每轮迭代中,随机优化某一条训练数据上的损失函数,这样每一轮的参数更新速度大大加快。
  • 缺点:
    • 准确度下降。由于即使在目标函数为强凸函数的情况下,SGD仍旧无法做到线性收敛。
    • 可能会收敛到局部最优,由于单个样本并不能代表全体样本的趋势。
    • 不易于并行实现。
7.3 小批量梯度下降
  • 小批量梯度下降(Mini-Batch Gradient Descent,MBGD)是对批量梯度下降以及随机梯度下降的一个折中方法。其思想是:每次迭代使用指定个(batch_size)样本来对参数进行更新。
  • 优点:
    • 通过矩阵运算,每次在一个batch上优化神经网络参数并不会比单个数据慢太多。
    • 每次使用一个batch可以大大减小收敛所需要的迭代次数,同时可以使收敛到的结果更加接近梯度下降的效果。
  • 缺点:
    • batch_size的不当选择可能会带来一些问题。
8. 几种梯度下降算法收敛比较

在这里插入图片描述

三、小结

  • 损失函数:用于度量预测值和期望值之间的差异,根据该差异值进行参数调整。
  • 梯度下降:用于以最快的速度、最少的步骤快速找到损失函数的极小值。

第四章 反向传播算法

一、反向传播算法

1. 什么是正向传播网络?
  • 前一层的输出作为后一层的输入的逻辑结构,每一层神经元仅与下一层的神经元全连接,通过增加神经网络的层数虽然可为其提供更大的灵活性,让网络具有更强的表征能力,也就是说,能解决的问题更多,但随之而来的数量庞大的网络参数的训练,一直是制约多层神经网络发展的一个重要瓶颈
    在这里插入图片描述
2. 什么是反向传播?
  • 反向传播(Backpropagation algorithm)全称“误差反向传播”,是在深度神经网络中,根据输出层输出值,来反向调整隐藏层权重的一种方法。
3. 为什么需要反向传播?
  • 为什么不直接使用梯度下降而使用反向传播方式更新权重呢?
  • 梯度下降应用于有明确求导函数的情况,或者可以求出误差的情况(比如线性回归),我们可以把它看做没有隐藏层的网络。但对于多个隐藏层的神经网络,输出层可以直接求出误差来更新参数,但隐藏层的误差是不存在的,因此不能对它直接应用梯度下降,而是先将误差反向传播至隐藏层,然后再应用梯度下降
4. 图解反向传播

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

5. 反向传播计算
  • 考虑函数y=f(x),输出为E,反向传播的计算顺序是,将信号E乘以节点的局部导数(偏导数),传递给前面的节点,这样可以高效地求出导数的值
    在这里插入图片描述
6. 加法节点反向传播计算

在这里插入图片描述

7. 乘法节点反向传播计算

在这里插入图片描述

8. 链式求导法则

在这里插入图片描述
在这里插入图片描述

9. 案例:通过反向传播计算偏导数

在这里插入图片描述

二、小结

  • 反向传播算法:目的是根据预测输出,调整权重参数,使得模型更快收敛。
  • 链式求导法则
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

柠檬小帽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值