SpringCloud 微服务全栈体系(十二)

第十一章 分布式搜索引擎 elasticsearch

一、初识 elasticsearch

1. 了解 ES

1.1 elasticsearch 的作用
  • elasticsearch 是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容

  • 例如:

    • 在 GitHub 搜索代码

    在这里插入图片描述

    • 在电商网站搜索商品

    在这里插入图片描述

    • 在谷歌搜索答案

    在这里插入图片描述

    • 在打车软件搜索附近的车
1.2 ELK 技术栈
  • elasticsearch 结合 kibana、Logstash、Beats,也就是 elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

在这里插入图片描述

  • 而 elasticsearch 是 elastic stack 的核心,负责存储、搜索、分析数据。

在这里插入图片描述

1.3 elasticsearch 和 lucene
  • elasticsearch 底层是基于lucene来实现的。

  • Lucene是一个 Java 语言的搜索引擎类库,是 Apache 公司的顶级项目,由 DougCutting 于 1999 年研发。官网地址:https://lucene.apache.org/ 。

  • elasticsearch的发展历史:

    • 2004 年 Shay Banon 基于 Lucene 开发了 Compass
    • 2010 年 Shay Banon 重写了 Compass,取名为 Elasticsearch。

在这里插入图片描述

1.4 为什么不是其他搜索技术?
  • 目前比较知名的搜索引擎技术排名:

在这里插入图片描述

  • 虽然在早期,Apache Solr 是最主要的搜索引擎技术,但随着发展 elasticsearch 已经渐渐超越了 Solr,独占鳌头。
1.5 总结
  • 什么是 elasticsearch?

    • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能
  • 什么是 elastic stack(ELK)?

    • 是以 elasticsearch 为核心的技术栈,包括 beats、Logstash、kibana、elasticsearch
  • 什么是 Lucene?

    • 是 Apache 的开源搜索引擎类库,提供了搜索引擎的核心 API

2. 倒排索引

  • 倒排索引的概念是基于 MySQL 这样的正向索引而言的。
2.1 正向索引
  • 那么什么是正向索引呢?例如给下表(tb_goods)中的 id 创建索引:

在这里插入图片描述

  • 如果是根据 id 查询,那么直接走索引,查询速度非常快。

  • 但如果是基于 title 做模糊查询,只能是逐行扫描数据,流程如下:

1)用户搜索数据,条件是 title 符合"%手机%"

2)逐行获取数据,比如 id 为 1 的数据

3)判断数据中的 title 是否符合用户搜索条件

4)如果符合则放入结果集,不符合则丢弃。回到步骤 1

  • 逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

请添加图片描述

2.2 倒排索引
  • 倒排索引中有两个非常重要的概念:

    • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
    • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条
  • 创建倒排索引是对正向索引的一种特殊处理,流程如下:

    • 将每一个文档的数据利用算法分词,得到一个个词条
    • 创建表,每行数据包括词条、词条所在文档 id、位置等信息
    • 因为词条唯一性,可以给词条创建索引,例如 hash 表结构索引
  • 如图:

在这里插入图片描述

  • 倒排索引的搜索流程如下(以搜索"华为手机"为例):

1)用户输入条件"华为手机"进行搜索。

2)对用户输入内容分词,得到词条:华为手机

3)拿着词条在倒排索引中查找,可以得到包含词条的文档 id:1、2、3。

4)拿着文档 id 到正向索引中查找具体文档。

  • 如图:

请添加图片描述

  • 虽然要先查询倒排索引,再查询正向索引,但是无论是词条、还是文档 id 都建立了索引,查询速度非常快!无需全表扫描。
2.3 正向和倒排
  • 那么为什么一个叫做正向索引,一个叫做倒排索引呢?

    • 正向索引是最传统的,根据 id 索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

    • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到包含词条的文档的 id,然后根据 id 获取文档。是根据词条找文档的过程

  • 是不是恰好反过来了?

  • 那么两者方式的优缺点是什么呢?

2.3.1 正向索引
  • 优点:
    • 可以给多个字段创建索引
    • 根据索引字段搜索、排序速度非常快
  • 缺点:
    • 根据非索引字段,或者索引字段中的部分词条查找时,只能全表扫描。
2.3.2 倒排索引
  • 优点:
    • 根据词条搜索、模糊搜索时,速度非常快
  • 缺点:
    • 只能给词条创建索引,而不是字段
    • 无法根据字段做排序

3. es 的一些概念

  • elasticsearch 中有很多独有的概念,与 mysql 中略有差别,但也有相似之处。
3.1 文档和字段
  • elasticsearch 是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为 json 格式后存储在 elasticsearch 中:

在这里插入图片描述

  • 而 Json 文档中往往包含很多的字段(Field),类似于数据库中的列。
3.2 索引和映射
  • 索引(Index),就是相同类型的文档的集合。

  • 例如:

    • 所有用户文档,就可以组织在一起,称为用户的索引;
    • 所有商品的文档,可以组织在一起,称为商品的索引;
    • 所有订单的文档,可以组织在一起,称为订单的索引;

请添加图片描述

  • 因此,我们可以把索引当做是数据库中的表。

  • 数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

3.3 mysql 与 elasticsearch
  • 我们统一的把 mysql 与 elasticsearch 的概念做一下对比:
MySQLElasticsearch说明
TableIndex索引(index),就是文档的集合,类似数据库的表(table)
RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是 JSON 格式
ColumnField字段(Field),就是 JSON 文档中的字段,类似数据库中的列(Column)
SchemaMappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
SQLDSLDSL 是 elasticsearch 提供的 JSON 风格的请求语句,用来操作 elasticsearch,实现 CRUD
  • 是不是说,学习了 elasticsearch 就不再需要 mysql 了呢?

  • 并不是如此,两者各自有自己的擅长支出:

    • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

    • Elasticsearch:擅长海量数据的搜索、分析、计算

  • 因此在企业中,往往是两者结合使用:

    • 对安全性要求较高的写操作,使用 mysql 实现
    • 对查询性能要求较高的搜索需求,使用 elasticsearch 实现
    • 两者再基于某种方式,实现数据的同步,保证一致性

在这里插入图片描述

4. 安装 es、kibana

4.1 安装 es
4.1.1 部署单点 es
4.1.1.1 创建网络
  • 因为还需要部署 kibana 容器,因此需要让 es 和 kibana 容器互联。这里先创建一个网络:
docker network create es-net
4.1.1.2 加载镜像
  • 采用 elasticsearch 的 7.12.1 版本的镜像,这个镜像体积非常大,接近 1G。
  • 资料提供了镜像的 tar 包。
    见专栏 -> 全栈资料包 -> 资源包/02_cloud

在这里插入图片描述

  • 将其上传到虚拟机中,然后运行命令加载即可:
# 导入数据
docker load -i es.tar
  • 同理还有kibana的 tar 包也需要这样做。
4.1.1.3 运行
  • 运行 docker 命令,部署单点 es:
docker run -d \
	--name es \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    --network es-net \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.12.1
  • 命令解释:

    • -e "cluster.name=es-docker-cluster":设置集群名称
    • -e "http.host=0.0.0.0":监听的地址,可以外网访问
    • -e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
    • -e "discovery.type=single-node":非集群模式
    • -v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定 es 的数据目录
    • -v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定 es 的日志目录
    • -v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定 es 的插件目录
    • --privileged:授予逻辑卷访问权
    • --network es-net :加入一个名为 es-net 的网络中
    • -p 9200:9200:端口映射配置
  • 在浏览器中输入:http://192.168.150.101:9200 即可看到 elasticsearch 的响应结果:

在这里插入图片描述

4.1.2 部署 kibana
  • kibana 可以给我们提供一个 elasticsearch 的可视化界面。
4.1.2.1 部署
  • 运行 docker 命令,部署 kibana

    docker run -d \
    --name kibana \
    -e ELASTICSEARCH_HOSTS=http://es:9200 \
    --network=es-net \
    -p 5601:5601  \
    kibana:7.12.1
    
    • --network es-net :加入一个名为 es-net 的网络中,与 elasticsearch 在同一个网络中
    • -e ELASTICSEARCH_HOSTS=http://es:9200":设置 elasticsearch 的地址,因为 kibana 已经与 elasticsearch 在一个网络,因此可以用容器名直接访问 elasticsearch
    • -p 5601:5601:端口映射配置
  • kibana 启动一般比较慢,需要多等待一会,可以通过命令查看运行日志:

docker logs -f kibana
  • 此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果
4.1.2.2 DevTools
  • kibana 中提供了一个 DevTools 界面
  • 这个界面中可以编写 DSL 来操作 elasticsearch。并且对 DSL 语句有自动补全功能。
4.2 安装分词器
4.2.1 在线安装 ik 插件(较慢)
# 进入容器内部
docker exec -it elasticsearch /bin/bash

# 在线下载并安装
./bin/elasticsearch-plugin  install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip

#退出
exit
#重启容器
docker restart elasticsearch
4.2.2 离线安装 ik 插件(推荐)
4.2.2.1 查看数据卷目录
  • 安装插件需要知道 elasticsearch 的 plugins 目录位置,而我们用了数据卷挂载,因此需要查看 elasticsearch 的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
  • 显示结果:
[
    {
        "CreatedAt": "2022-05-06T10:06:34+08:00",
        "Driver": "local",
        "Labels": null,
        "Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
        "Name": "es-plugins",
        "Options": null,
        "Scope": "local"
    }
]
  • 说明 plugins 目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data 这个目录中。
4.2.2.2 解压缩分词器安装包
  • 把资料中的 ik 分词器解压缩,重命名为 ik
    见专栏 -> 全栈资料包 -> 资源包/02_cloud

在这里插入图片描述

4.2.2.3 上传到 es 容器的插件数据卷中
  • 也就是/var/lib/docker/volumes/es-plugins/_data
4.2.2.4 重启容器
# 重启容器
docker restart es
# 查看es日志
docker logs -f es
4.2.2.5 测试
  • IK 分词器包含两种模式:

    • ik_smart:最少切分

    • ik_max_word:最细切分

GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小帽课堂学习java太棒了"
}
  • 结果
{
  "tokens" : [
    {
      "token" : "小帽",
      "start_offset" : 0,
      "end_offset" : 2,
      "type" : "CN_WORD",
      "position" : 0
    },
    {
      "token" : "课堂",
      "start_offset" : 2,
      "end_offset" : 5,
      "type" : "CN_WORD",
      "position" : 1
    },
    {
      "token" : "学习",
      "start_offset" : 5,
      "end_offset" : 7,
      "type" : "CN_WORD",
      "position" : 2
    },
    {
      "token" : "java",
      "start_offset" : 7,
      "end_offset" : 11,
      "type" : "ENGLISH",
      "position" : 3
    },
    {
      "token" : "太棒了",
      "start_offset" : 11,
      "end_offset" : 14,
      "type" : "CN_WORD",
      "position" : 4
    },
    {
      "token" : "太棒",
      "start_offset" : 11,
      "end_offset" : 13,
      "type" : "CN_WORD",
      "position" : 5
    },
    {
      "token" : "了",
      "start_offset" : 13,
      "end_offset" : 14,
      "type" : "CN_CHAR",
      "position" : 6
    }
  ]
}
4.2.3 扩展词词典
  • 随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给” 等。

  • 所以我们的词汇也需要不断的更新,IK 分词器提供了扩展词汇的功能。

4.2.3.1 打开 IK 分词器 config 目录

在这里插入图片描述

4.2.3.2 在 IKAnalyzer.cfg.xml 配置文件内容添加
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
        <entry key="ext_dict">ext.dic</entry>
</properties>
4.2.3.3 新建一个 ext.dic,可以参考 config 目录下复制一个配置文件进行修改
奥力给
4.2.3.4 重启 elasticsearch
docker restart es

# 查看 日志
docker logs -f elasticsearch
  • 日志中已经成功加载 ext.dic 配置文件
4.2.3.5 测试效果
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小帽学习Java,奥力给!"
}

注意:当前文件的编码必须是 UTF-8 格式,严禁使用 Windows 记事本编辑

4.2.4 停用词词典
  • 在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,那么我们在搜索时也应该忽略当前词汇。

  • IK 分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。

4.2.4.1 IKAnalyzer.cfg.xml 配置文件内容添加
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
        <comment>IK Analyzer 扩展配置</comment>
        <!--用户可以在这里配置自己的扩展字典-->
        <entry key="ext_dict">ext.dic</entry>
         <!--用户可以在这里配置自己的扩展停止词字典  *** 添加停用词词典-->
        <entry key="ext_stopwords">stopword.dic</entry>
</properties>
4.2.4.2 在 stopword.dic 添加停用词
神经病
4.2.4.3 重启 elasticsearch
# 重启服务
docker restart elasticsearch
docker restart kibana

# 查看 日志
docker logs -f elasticsearch
  • 日志中已经成功加载 stopword.dic 配置文件
4.2.4.4 测试效果
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text": "小帽课堂学习Java,神经病都点赞,奥力给!"
}

注意:当前文件的编码必须是 UTF-8 格式,严禁使用 Windows 记事本编辑

4.3 部署 es 集群
  • 部署 es 集群可以直接使用 docker-compose 来完成,不过要求 Linux 虚拟机至少有4G的内存空间。
  • 首先编写一个 docker-compose 文件,内容如下:
version: '2.2'
services:
  es01:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es01
    environment:
      - node.name=es01
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es02,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data01:/usr/share/elasticsearch/data
    ports:
      - 9200:9200
    networks:
      - elastic
  es02:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es02
    environment:
      - node.name=es02
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es03
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data02:/usr/share/elasticsearch/data
    networks:
      - elastic
  es03:
    image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
    container_name: es03
    environment:
      - node.name=es03
      - cluster.name=es-docker-cluster
      - discovery.seed_hosts=es01,es02
      - cluster.initial_master_nodes=es01,es02,es03
      - bootstrap.memory_lock=true
      - "ES_JAVA_OPTS=-Xms512m -Xmx512m"
    ulimits:
      memlock:
        soft: -1
        hard: -1
    volumes:
      - data03:/usr/share/elasticsearch/data
    networks:
      - elastic

volumes:
  data01:
    driver: local
  data02:
    driver: local
  data03:
    driver: local

networks:
  elastic:
    driver: bridge
  • Run docker-compose to bring up the cluster:
docker-compose up
4.4 总结
  • 分词器的作用是什么?

    • 创建倒排索引时对文档分词
    • 用户搜索时,对输入的内容分词
  • IK 分词器有几种模式?

    • ik_smart:智能切分,粗粒度
    • ik_max_word:最细切分,细粒度
  • IK 分词器如何拓展词条?如何停用词条?

    • 利用 config 目录的 IkAnalyzer.cfg.xml 文件添加拓展词典和停用词典
    • 在词典中添加拓展词条或者停用词条
微服务是什么?微服务是用于构建应用程序的架构风格,一个大的系统可由一个或者多个微服务组成,微服务架构可将应用拆分成多个核心功能,每个功能都被称为一项服务,可以单独构建和部署,这意味着各项服务在工作和出现故障的时候不会相互影响。为什么要用微服务?单体架构下的所有代码模块都耦合在一起,代码量大,维护困难,想要更新一个模块的代码,也可能会影响其他模块,不能很好的定制化代码。微服务中可以有java编写、有Python编写的,他们都是靠restful架构风格统一成一个系统的,所以微服务本身与具体技术无关、扩展性强。大型电商平台微服务功能图为什么要将SpringCloud项目部署到k8s平台?SpringCloud只能用在SpringBoot的java环境中,而kubernetes可以适用于任何开发语言,只要能被放进docker的应用,都可以在kubernetes上运行,而且更轻量,更简单。SpringCloud很多功能都跟kubernetes重合,比如服务发现,负载均衡,配置管理,所以如果把SpringCloud部署到k8s,那么很多功能可以直接使用k8s原生的,减少复杂度。Kubernetes作为成熟的容器编排工具,在国内外很多公司、世界500强等企业已经落地使用,很多中小型公司也开始把业务迁移到kubernetes中。kubernetes已经成为互联网行业急需的人才,很多企业都开始引进kubernetes技术人员,实现其内部的自动化容器云平台的建设。对于开发、测试、运维、架构师等技术人员来说k8s已经成为的一项重要的技能,下面列举了国内外在生产环境使用kubernetes的公司: 国内在用k8s的公司:阿里巴巴、百度、腾讯、京东、360、新浪、头条、知乎、华为、小米、富士康、移动、银行、电网、阿里云、青云、时速云、腾讯、优酷、抖音、快手、美团等国外在用k8s的公司:谷歌、IBM、丰田、iphone、微软、redhat等整个K8S体系涉及到的技术众多,包括存储、网络、安全、监控、日志、DevOps、微服务等,很多刚接触K8S的初学者,都会感到无从下手,为了能让大家系统地学习,克服这些技术难点,推出了这套K8S架构师课程。Kubernetes的发展前景 kubernetes作为炙手可热的技术,已经成为云计算领域获取高薪要掌握的重要技能,在招聘网站搜索k8s,薪资水平也非常可观,为了让大家能够了解k8s目前的薪资分布情况,下面列举一些K8S的招聘截图: 讲师介绍:  先超容器云架构师、IT技术架构师、DevOps工程师,曾就职于世界500强上市公司,拥有多年一线运维经验,主导过上亿流量的pv项目的架构设计和运维工作;具有丰富的在线教育经验,对课程一直在改进和提高、不断的更新和完善、开发更多的企业实战项目。所教学员遍布京东、阿里、百度、电网等大型企业和上市公司。课程学习计划 学习方式:视频录播+视频回放+全套源码笔记 教学服务:模拟面试、就业指导、岗位内推、一对一答疑、远程指导 VIP终身服务:一次购买,终身学习课程亮点:1. 学习方式灵活,不占用工作时间:可在电脑、手机观看,随时可以学习,不占用上班时间2.老师答疑及时:老师24小时在线答疑3. 知识点覆盖全、课程质量高4. 精益求精、不断改进根据学员要求、随时更新课程内容5. 适合范围广,不管你是0基础,还是拥有工作经验均可学习:0基础1-3年工作经验3-5年工作经验5年以上工作经验运维、开发、测试、产品、前端、架构师其他行业转行做技术人员均可学习课程部分项目截图   课程大纲 k8s+SpringCloud全栈技术:基于世界500强的企业实战课程-大纲第一章 开班仪式老师自我介绍、课程大纲介绍、行业背景、发展趋势、市场行情、课程优势、薪资水平、给大家的职业规划、课程学习计划、岗位内推第二章 kubernetes介绍Kubernetes简介kubernetes起源和发展kubernetes优点kubernetes功能kubernetes应用领域:在大数据、5G、区块链、DevOps、AI等领域的应用第三章  kubernetes中的资源对象最小调度单元Pod标签Label和标签选择器控制器Replicaset、Deployment、Statefulset、Daemonset等四层负载均衡器Service第四章 kubernetes架构和组件熟悉谷歌的Borg架构kubernetes单master节点架构kubernetes多master节点高可用架构kubernetes多层架构设计原理kubernetes API介绍master(控制)节点组件:apiserver、scheduler、controller-manager、etcdnode(工作)节点组件:kube-proxy、coredns、calico附加组件:prometheus、dashboard、metrics-server、efk、HPA、VPA、Descheduler、Flannel、cAdvisor、Ingress     Controller。第五章 部署多master节点的K8S高可用集群(kubeadm)第六章 带你体验kubernetes可视化界面dashboard在kubernetes中部署dashboard通过token令牌登陆dashboard通过kubeconfig登陆dashboard限制dashboard的用户权限在dashboard界面部署Web服务在dashboard界面部署redis服务第七章 资源清单YAML文件编写技巧编写YAML文件常用字段,YAML文件编写技巧,kubectl explain查看帮助命令,手把手教你创建一个Pod的YAML文件第八章 通过资源清单YAML文件部署tomcat站点编写tomcat的资源清单YAML文件、创建service发布应用、通过HTTP、HTTPS访问tomcat第九章  kubernetes Ingress发布服务Ingress和Ingress Controller概述Ingress和Servcie关系安装Nginx Ingress Controller安装Traefik Ingress Controller使用Ingress发布k8s服务Ingress代理HTTP/HTTPS服务Ingress实现应用的灰度发布-可按百分比、按流量分发第十章 私有镜像仓库Harbor安装和配置Harbor简介安装HarborHarbor UI界面使用上传镜像到Harbor仓库从Harbor仓库下载镜像第十一章 微服务概述什么是微服务?为什么要用微服务微服务的特性什么样的项目适合微服务?使用微服务需要考虑的问题常见的微服务框架常见的微服务框架对比分析第十二SpringCloud概述SpringCloud是什么?SpringCloudSpringBoot什么关系?SpringCloud微服务框架的优缺点SpringCloud项目部署到k8s的流程第十三章 SpringCloud组件介绍服务注册与发现组件Eureka客户端负载均衡组件Ribbon服务网关Zuul熔断器HystrixAPI网关SpringCloud Gateway配置中心SpringCloud Config第十四章 将SpringCloud项目部署到k8s平台的注意事项如何进行服务发现?如何进行配置管理?如何进行负载均衡?如何对外发布服务?k8s部署SpringCloud项目的整体流程第十五章 部署MySQL数据库MySQL简介MySQL特点安装部署MySQL在MySQL数据库导入数据对MySQL数据库授权第十六章 将SpringCLoud项目部署到k8s平台SpringCloud微服务电商框架安装openjdk和maven修改源代码、更改数据库连接地址通过Maven编译、构建、打包源代码在k8s中部署Eureka组件在k8s中部署Gateway组件在k8s中部署前端服务在k8s中部署订单服务在k8s中部署产品服务在k8s中部署库存服务第十七章 微服务的扩容和缩容第十八章 微服务的全链路监控什么是全链路监控?为什么要进行全链路监控?全链路监控能解决哪些问题?常见的全链路监控工具:zipkin、skywalking、pinpoint全链路监控工具对比分析第十九章 部署pinpoint服务部署pinpoint部署pinpoint agent在k8s中重新部署带pinpoint agent的产品服务在k8s中重新部署带pinpoint agent的订单服务在k8s中重新部署带pinpoint agent的库存服务在k8s中重新部署带pinpoint agent的前端服务在k8s中重新部署带pinpoint agent的网关和eureka服务Pinpoint UI界面使用第二十章 基于Jenkins+k8s+harbor等构建企业级DevOps平台第二十一章 基于Promethues+Alert+Grafana搭建企业级监控系统第二十二章 部署智能化日志收集系统EFK 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值