接触匈牙利算法的第一个实际应用题
匈牙利算法大家可以自己百度,讲的很好生动形象
这道题是二分图匹配的一道实际应用,要求求最大点的集合,集合中任意两点距离必须大于1.3
因此我们可以反过来求两点相连距离为1(因为所给点的坐标都是整数),求出最大匹配后,点数 - 最大匹配数就是二分图的最大独立点集。那既然是二分图,我们该如何把n个点,分成两部分呢?很明显(一点都不明显好嘛!),在一部分的所有点任意两点距离都得大于1,如果两点x + y的奇偶性相同,那么这两个点距离一定大于一。所以这n个点,x + y的和都为奇数的在一部分,剩下的就是另一部分了。
AC代码
#include <bits/stdc++.h>
#define LL long long
using namespace std;
const int maxn = 2018;
int use[maxn],match[maxn];
struct node
{
int x,y;
bool operator < (const node & p)const
{
return x + y > p.x + p.y;
}
}a[maxn];
vector<int> edges[maxn];
bool found(int p)
{
for(int i = 0;i < (int)edges[p].size();i++)
{
int e = edges[p][i];
if(!use[e])
{
use[e] = 1;
if(!match[e] || found(match[e]))
{
match[e] = p;
return true;
}
}
}
return false;
}
int main()
{
int n;
while(scanf("%d",&n) != EOF)
{
memset(a,0,sizeof(a));
memset(match,0,sizeof(match));
for(int i = 1;i <= n;i++)
{
edges[i].clear();
scanf("%d%d",&a[i].x,&a[i].y);
}
sort(a + 1,a + n + 1);
for(int i = 1;i <= n;i++)
{
for(int j = i + 1;j <= n;j++)
{
if((a[i].x - a[j].x) * (a[i].x - a[j].x) + (a[i].y - a[j].y) * (a[i].y - a[j].y) == 1)
{
//printf("%d %d\n",i,j);
edges[i].push_back(j);
edges[j].push_back(i);
}
}
}
int ans = 0;
for(int i = 1;i <= n;i++)
{
memset(use,0,sizeof(use));
if((a[i].x + a[i].y) % 2)
{
if(found(i)) ans++;
}
}
printf("%d\n",n - ans);
}
return 0;
}