AIGC
文章平均质量分 88
赵卓不凡
公众号:AI算法之道
展开
-
笔记本上打造专属的LLama3聊天机器人
LLama3打造专属机器人原创 2024-05-01 15:44:42 · 1458 阅读 · 0 评论 -
提升Midjourney风格化的三个技巧
本文重点介绍了针对提示Midjourney风格参考化生成效果总结了三个技巧,使用这些技巧可以提升大家图像生成的质量和视觉呈现效果。您学废了嘛?原创 2024-03-23 09:34:34 · 574 阅读 · 0 评论 -
Midjourney发布新特性风格参考
总之,Midjourney再次证明,他们是风格转换方面的最佳工具。现在,用户对生成图像的风格和美感的控制水平和精确度是无与伦比的。作为人工智能艺术爱好者,我非常期待看到AI绘画的下一次变化。也许在不久会有更多全新的功能涌现?让我们拭目以待!注: 相关素材来自互联网,供学习交流使用,侵权删!原创 2024-03-20 21:54:47 · 1457 阅读 · 0 评论 -
科普文之五分钟轻松入门Generative AI
总之,生成式人工智能代表着人工智能领域的巨大飞跃。这项突破性技术不仅能识别模式,还能从中创造出新的内容,它有可能彻底改变从艺术和音乐到产品设计等无数行业。随着我们继续探索生成式人工智能的可能性,技术的未来似乎比以往任何时候都更有希望。原创 2024-03-16 10:47:08 · 981 阅读 · 0 评论 -
关于Sora你可能不知道的五项功能
Sora模型的发布已有数日,至今仍在网上热传。Sora团队不断在 官网上传新视频,所有视频的效果都令人叹为观止。即使是初始版本,它的功能也是令人震惊的。难以想象 Sora 在迭代几个版本之后能做些什么,未来这项技术会如何彻底重塑视频创作,让我们拭目以待。原创 2024-03-10 13:40:56 · 902 阅读 · 0 评论 -
Stable Diffusion V3测评
stable diffusion V3 Vs Midjourney Vs DALLE-3原创 2024-03-06 21:33:55 · 1698 阅读 · 0 评论 -
Stable Diffusion 3 发布及其重大改进
是最新推出的功能最强大的文本到图像生成的模型。它在处理多文本提示、图像质量甚至文本渲染能力方面都有重大的改进。目前,该模型套件的参数量从 800M 到 8B 不等。它结合了扩散transformer结构(类似于Sora中的结构)和Flow Matching。本文重点介绍了SD3带来的新的改进,在此说明下,目前SD3还为对公众开放,但是大家可以通过注册来获得Discord服务器的邀请。预览版的目的是提高其质量和安全性,就像其他稳定的扩散版本一样。原创 2024-02-24 09:40:42 · 1835 阅读 · 1 评论 -
大模型平民化技术之LORA
共享大型的LLM模型是未来的趋势,如果要适应到某个具体任务上,只要训练LoRA模组即可,而这项技术也带来方便的替换性,未来大家只要分享LoRA的模型权重,就可以快速切换至不同的任务。此外,LoRA通过大量降低训练参数,来大幅降低了硬体的训练门槛,并且与完全的模型相比,推论速度的增加是相当少的。原创 2024-02-23 22:13:03 · 2277 阅读 · 0 评论 -
2024不可不会的StableDiffusion之图生图(七)
我们知道,在之前的章节里函数从随机高斯噪声开始生成图像,但如果我们提供初始种子图像来指导扩散过程呢?这正是图像到图像的工作方式。我们可以使用初始种子图像将其与一些噪声(可以由强度参数引导)混合,然后进行多轮扩散,而不再是纯粹依赖于输出图像的文本条件。本文重点介绍了使用稳定扩散模型进行图生图,即以图像作为输入源来控制图像生成内容的背景知识和具体代码实现,并给出了相应的示例。您学废了嘛?原创 2024-02-06 10:16:46 · 850 阅读 · 0 评论 -
2024不可不会的StableDiffusion之反向提示词(六)
本文重点介绍了使用负面文本提示词来进行条件嵌入实现控制文本生成图像内容的相关背景知识和具体代码实现,并给出了相应的示例。您学废了嘛?原创 2024-02-06 09:44:05 · 3975 阅读 · 0 评论 -
2024不可不会的StableDiffusion之拼接各组件(五)
稳定扩散模型采用文本输入和种子作为相关输入。然后,文本输入通过CLIP模型生成大小为77x768的文本嵌入,种子用于生成大小为4x64x64的高斯噪声,并将其作为第一个潜在图像表示。接下来,U-Net迭代地对随机的潜在图像表示进行去噪。U-Net的输出是预测噪声,然后通过scheduler调度器算法用于计算潜在的latents。这种去噪和基于文本的调节的过程重复N次(我们将使用 50 次)以便来获取更好的潜在图像表示。此过程完成后,VAE解码器将对潜在图像表示(4x64x64)原创 2024-02-01 17:00:20 · 2000 阅读 · 5 评论 -
2024不可不会的StableDiffusion之Unet(四)
本文重点介绍了SD模型中的Unet组件的相关功能和具体工作原理,并详细介绍了其去噪过程;至此,我们完成了稳定扩散模型的三个关键组件,即CLIP文本编码器、VAE和U-Net。在下一篇文章中,我们将研究使用这些组件的扩散过程。您学废了嘛!原创 2024-01-30 08:46:09 · 4867 阅读 · 0 评论 -
2024不可不会的StableDiffusion之变分自编码器(三)
接着我们来实现用VAE上述函数,接收图像和我们的变分自编码器作为输入,通过调用vae中的encode函数来实现将输入的image转化为潜在低纬度特征向量。本文重点介绍了SD模型中的变分自编码器VAE的相关功能和具体工作原理,并详细介绍了其编码器和解码器的操作步骤,并给出了相应的代码示例。您学废了嘛!原创 2024-01-30 08:28:40 · 1656 阅读 · 0 评论 -
2024不可不会的StableDiffusion之引言(一)
简单来说,稳定扩散模型是一种可以在给定文本提示词的情况下生成图像的深度学习模型。将其进行抽象,其主要实现的功能如下:正如我们从上面的图像中看到的那样,我们可以传递一个输入的文本提示,如“戴帽子的狗”,此时稳定的扩散模型可以生成代表文本语义的图像。是不是很神奇?原创 2024-01-27 10:28:31 · 791 阅读 · 2 评论 -
2024不可不会的StableDiffusion之文本编码器(二)
本文重点介绍了SD模型中的文本编码器的相关功能和具体实现原理,并详细介绍了其两个具体操作步骤,并给出了相应的代码示例。您学废了嘛!原创 2024-01-27 13:12:44 · 2590 阅读 · 0 评论