自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(16)
  • 收藏
  • 关注

原创 联邦学习基础笔记(王树森视频)

王树森视频学习笔记:联邦学习与传统分布式机器学习的区别、联邦学习的研究分析

2023-03-03 18:25:13 352

原创 (论文分析)基于契约理论和贝叶斯匹配博弈的分层多址边缘计算卸载

原因是在完全信息场景下,ECN的效用总是等于零,而在基于契约理论的算法中,更高的类型表示更高的效用。:提出了一种新的NV场景下的分层计算卸载框架,有三个参与者,即MEC运营商、ECN和从MEC运营方订购计算服务的CSS,MEC运营商在收到CSS的请求后,通过向附近的ECN租赁足够的计算资源来满足CSS的需求,然后这些ECN将为CSS提供服务,即MEC运营商为CSS提供虚拟服务,而ECN为CS提供物理服务,ECN和CSS都拥有一些其他玩家不知道的私人信息,其中考虑了激励机制设计和资源分配两步序列。

2022-11-26 14:33:06 492

原创 (论文分析)移动边缘计算中多资源分配和定价的Stackelberg博弈方法

EU1对资源的需求随着相应预算的增加而增加,相反,其他EU成员国的需求减少,因为在其预算不变的情况下,由于EU1的预算增加,资源价格上涨;随着EU的增加,所有EU对资源r的总预算增加,导致每个MEC的资源r单价增加,相应地,随着EU数量和资源单价r的增加,每个MEC的收入增加;证明了博弈存在唯一的纳什均衡,子问题的最优解够成原问题的最优解,为找到最优解(即请求资源策略和定价策略),设计了两种算法,即找到EU最佳资源需求策略的最优需求计算算法1(ODCA)和找到均衡价格的迭代算法2。

2022-11-22 19:41:00 1074

原创 可微分神经计算机DNC

通过把可训练的神经网络控制器和可读写的外部存储器进行结合,可微分神经计算机(Differentiable Neural Computer,DNC)这种混合学习型神经网络,既能像神经网络那样进行算法和参数的学习,又能像计算机那样处理复杂数据信息流。接口向量控制读写头控制通过读写机制与外存储矩阵交互,生成此时刻的写信息,并更新矩阵获得此时刻的读信息。注意读写头控制变量为记忆矩阵行与行之间的相对强度,而不是具体的记忆信息向量。在此时刻记忆矩阵更新之后,读头提取此时刻记忆矩阵读头信息流。为写头是归一化的分布权重;

2022-11-09 10:14:44 507

原创 (论文分析)边缘计算中基于深度强化学习的卸载博弈

A Deep Reinforcement Learning Based Offloading Game in Edge Computing

2022-10-29 08:47:51 1364

原创 (论文分析)移动边缘计算服务器上自主驾驶任务的调度算法

(论文分析)移动边缘计算服务器上自主驾驶任务的调度算法

2022-10-22 14:17:04 393

原创 (论文分析)基于深度强化学习方法的有效边缘学习激励机制设计

(论文分析)基于深度强化学习方法的有效边缘学习激励机制设计

2022-10-16 10:45:12 1148

原创 (论文分析)车辆边缘计算中志愿者辅助的协同卸载和资源分配

一篇车辆边缘计算中志愿者辅助的协同卸载和资源分配的论文分析

2022-10-12 09:06:45 549

原创 边缘计算卸载论文阅读分析总结(用于组会汇报甚是合适)

(翻译)端边缘云计算中计算卸载策略优化的潜在博弈方法

2022-10-09 11:36:32 749 1

原创 (论文分析)云边缘计算网络中基于Stackelberg博弈的计算卸载方法

基于Stackelberg博弈的计算卸载方法,用于汇报最合适

2022-10-09 11:22:37 769

原创 边缘计算卸载论文翻译于分析总结

边缘计算卸载论文翻译与分析

2022-10-03 09:54:51 2718

原创 边缘计算卸载知识点调研

边缘计算卸载的初步简介、一丢丢的博弈论纳什均衡

2022-10-03 09:02:50 1028

原创 吴恩达深度学习笔记——DAY4

目录一、神经网络的梯度下降二、随机初始化三、深层神经网络四、矩阵的维数五、参数VS超参数一、神经网络的梯度下降正向传播的方程:反向传播方程:二、随机初始化如果你要初始化成 0,由于所有的隐含单元都是对称的,无论你运行梯度下降多久,他 们一直计算同样的函数。这没有任何帮助,因为你想要两个不同的隐含单元计算不同的函数, 这个问题的解决方法就是随机初始化参数。初始化如下:这里的0.01是为了使得产生的随机数数值小一点,避免数值太大梯度下降...

2021-12-22 22:08:22 1167

原创 吴恩达深度学习——DAY3

目录一、神经网络的表示二、神经网络的计算与输出三、激活函数四、修正线性单元的函数(ReLu)五、不选用线性函数一、神经网络的表示输入特征?1、?2、?3,它们被竖直地堆叠起来,这叫做神经网络的输入层。它包 含了神经网络的输入;然后这里有另外一层我们称之为隐藏层,最后一层只由一个结点构成,而这个只 有一个结点的层被称为输出层,它负责产生预测值。隐藏层:在一个神经网络中,当你使用监督学习训练它的时候,训练集包含了输入?也包含了目标输出?,所以术语隐藏层的含义是在训练集中,

2021-12-20 21:02:36 956

原创 吴恩达深度学习笔记——DAY2

目录一、梯度下降法二、向量化(Vectorization)三、Python 中的广播(Broadcasting in Python)一、梯度下降法梯度下降法在测试集上,通过最小化代价函数(成本函数〉J(w,b)来训练的参数w和b,找到全局最优解,也就是代价函数(成本函数)J(w, b)这 个凸函数的最小值点,这个函数含有两个参数w和b。二、向量化(Vectorization)向量化是非常基础的去除代码中 for 循环的艺术,通过 numpy 内置...

2021-12-20 19:32:06 1257

原创 吴恩达深度学习笔记——DAY1

第一天文章目录一、ReLU 激活函数二、神经网络的监督学习1.提到的几种神经网络的用处2.神经网络的突破二、神经网络的监督学习总结新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入我们常常用深度学习这个术语来指训练神经网

2021-12-20 08:22:08 229

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除