BUNOJ 1093 && HDU 2973威尔逊定理

版权声明:欢迎转载,不要求署名~~~ https://blog.csdn.net/shadandeajian/article/details/82859611

传送门:BUNOJ

传送门:HDU

题意:

给一个数学关系式,关系式中有一个未知数n,每次输入n的值,要求输出表达式的值。

题解:

表达式中有一个sigma,而T的范围为1e6n的范围为1e6,显然,如果直接暴力的时间复杂度为O(1e^12^),肯定会超时。
这里用到一个基本数论:
威尔逊定理:(p1)!1(modp)( p -1 )! ≡ -1 ( mod p )
换句话说:若p为质数,则p可整除(p-1)!+1
所以,我们现在看这个公式。
(3k+6)!+13k+7\frac{(3k+6)!+1}{3k+7}

  • 3k+73k+7为素数时
    [(3k+6)!+13k+7[(3k+6)!3k+7]][\frac{(3k+6)!+1}{3k+7}-[\frac{(3k+6)!}{3k+7}]]为1
  • 3k+73k+7为非素数时
    [(3k+6)!+13k+7[(3k+6)!3k+7]][\frac{(3k+6)!+1}{3k+7}-[\frac{(3k+6)!}{3k+7}]]为0
    这样,我们只需要一个素数筛,然后维护一个前缀和,用于计算sigma

AC代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <map>
#define debug(x) cout<<#x<<" = "<<x<<endl;
#define INF 0x3f3f3f3f
using namespace std;

const int maxn = 4e6 + 10;
int prime[maxn], check[maxn], ans[maxn], total = 0, n;
bool line[maxn];

void getPrime() {
    for (long long i = 2; i <= 4*1e6; i++) {
        if (check[i] == 0) {
            prime[total++]=i;
            line[i]=true;
        }
        for (int j = 0; j < total; j++) {
            if (i * prime[j] > 4*1e6)
                break;
            check[i * prime[j]] = 1;
            if (i % prime[j] == 0)
                break;
        }
    }
}
void solve() {
    ans[0] = 0;
    for (int i = 1; i <= 1e6; i++) {
        ans[i] = ans[i - 1];
        if (line[3 * i + 7] == true)
            ans[i]++;
    }
}
int main(void) {
    ios::sync_with_stdio(false);
    int T;
    cin >> T;
    getPrime();
    solve();
    while (T--) {
        cin >> n;
        cout << ans[n] << endl;
    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页