排序算法小节

冒泡排序

package 冒泡排序;


/**
 * 时间复杂度 : O(n2)
 * 空间复杂度 : O(1)
 *  稳定排序
 * */
public class BubbleSort {

    public static void commonSort(int[] nums) {

        for (int i = 0; i < nums.length; i++) {
            for (int j = nums.length-1; j > i; j--) {
                //前者大于后者
                //相邻的进行比较
                if (nums[j] >= nums[j-1]) {
                    int tmp = nums[j];
                    nums[j] = nums[j-1];
                    nums[j-1] = tmp;
                }
            }
        }

    }

    // 优化
    public static void goodSort(int[] nums) {

        Boolean flag = true;
        for (int i = 0; i < nums.length && flag; i++) {
            flag = false;
            for (int j = nums.length-1; j > i; j--) {
                // 前者大于后者
                // 相邻的进行比较
                if (nums[j] >= nums[j-1]) {
                    int tmp = nums[j];
                    nums[j] = nums[j-1];
                    nums[j-1] = tmp;
                    flag = true;
                }
            }
        }
    }

    public static void main(String[] args) {
        int[] nums = {1,2,3,8,7,6,4};
        commonSort(nums);
        //goodSort(nums);
        for (int i = 0; i < nums.length; i++) {
            System.out.print(nums[i] + " ");
        }
    }


}

堆排序

package 堆排序;

public class HeapSort {
    public static void commonSort(int[] nums) {
        // 1. 建堆
        createHeap(nums);
        // 2. 调整堆
        int size = nums.length - 1;

        for (int i = 0; i < nums.length; i++) {
            int tmp = nums[size];
            nums[size] = nums[0];
            nums[0] = tmp;

            size--;

            shiftDown(nums, size, 0);
        }

    }

    private static void createHeap(int[] nums) {
        // 最后一个非叶子结点开始建堆
        for (int i = nums.length/2 - 1; i >= 0; i--) {
            shiftDown(nums, nums.length, i);
        }
    }

    private static void shiftDown(int[] nums, int length, int i) {
        // 父亲结点
        int parent = i;
        // 获取child
        int child = (parent * 2) + 1;

        // 循环向下调整
        while (child < length) {
            // 判断那个更小 与更小的交换
            if (child + 1 < nums.length && nums[child + 1] < nums[child]) {
                child = child + 1;
            }
            // 将小的向上调整
            // 大的向下调整
            if(nums[child] < nums[parent]) {
                int tmp = nums[child];
                nums[child] = nums[parent];
                nums[parent] = tmp;
            } else {
                break;
            }
            parent = child;
            child = (parent * 2) + 1;
        }
    }

    public static void main(String[] args) {
        int[] nums = {7,3,4,1,5,8,9};
        commonSort(nums);

        for (int i = 0; i < nums.length; i++) {
            System.out.print(nums[i] + " ");
        }
    }
}

希尔排序

package 希尔排序;


/**
 * 时间复杂度 最好 O(n) 最坏O(n2) 平均O(n 1.3)
 * 空间复杂度 O(1)
 * 不稳定排序
* */
public class ShellSort {

    public static void commonSort(int[] nums) {
        int gap = nums.length;
        while (gap > 1) {
            helpSort(nums, gap);
            gap = gap / 3;
        }
        helpSort(nums, 1);
    }

    private static void helpSort(int[] nums, int gap) {
        for (int i = 1; i < nums.length; i++) {

            int x = nums[i];
            int c = i - gap;
            for (; c >= 0 && nums[c] > x ; c -= gap) {
                nums[c + gap] = nums[c];
            }
            nums[c + gap] = x;
        }
    }

    public static void main(String[] args) {
        int[] nums = {1,2,3,8,7,6,4};
        commonSort(nums);
        for (int i = 0; i < nums.length; i++) {
            System.out.print(nums[i] + " ");
        }
    }

}

归并排序

package 归并排序;


/**
 *  时间复杂度 O(nlogn)
 *  空间复杂度 O(n)
 *  稳定排序
* */
public class mergeSort {

    public static void commonSort(int[] nums) {
        helpSort(nums, 0, nums.length);
        // 传进去的是一个左闭右开的数组
    }

    private static void helpSort(int[] nums, int start, int end) {
        if(start >= end - 1) {
            return;
        }
        int mid = (end + start) / 2;

         // 传进去的是一个左闭右开的数组
        helpSort(nums, start, mid);
        helpSort(nums, mid, end);

        merge(nums, start, mid, end);

    }

    // 开始 归并排序
    private static void merge(int[] nums, int start, int mid, int end) {
        int low = start;
        int mid2 = mid;

        int length = end - start;
        int[] array = new int[length];
        int k = 0;

        //
        while (low < mid && mid2 < end) {
            if ( nums[low] <= nums[mid2]) {
                array[k] = nums[low];
                k++;
                low++;
            } else {
                array[k] = nums[mid2];
                mid2++;
                k++;
            }
        }

        while (low < mid) {
            array[k] = nums[low];
            k++;
            low++;
        }

        while (mid2 < end) {
            array[k] = nums[mid2];
            mid2++;
            k++;
        }

        // 将原来的数组写回去
        // 写回去的时候一定加上start  并且长度是小于我们当前新建的归并数据
        for (int i = 0; i < length; i++) {
            nums[i + start] = array[i];
        }
    }

    public static void main(String[] args) {
        int[] nums = {1,2,3,8,7,6,4};
        commonSort(nums);
        for (int i = 0; i < nums.length; i++) {
            System.out.print(nums[i] + " ");
        }
    }

}

快排

package 快排;

/**
 * 时间复杂度 最坏O(n2) 平均 O(nlogn)
 * 空间复杂度 O(Logn) O(n)
 * 不稳定排序 12344 可能会改变两个数字的相对顺序
 * */

public class QuickSort {

    public static void commonSort(int nums[]) {
        int len = nums.length;
        helpSort(nums, 0, len-1);
    }

    private static void helpSort(int[] nums, int left, int right) {
        if (left >= right) {
            return;
        }
        // 通过 partition 排序
        // 然后 进行获取partition之后的基准值
        // 这个基准值就是从左边 到右边遍历
        int index = partition(nums, left, right);
        // 每一次的partition遍历 都会分开两个数组
        helpSort(nums, left, index);
        helpSort(nums, index + 1, right);
    }

    private static int partition(int[] nums, int start, int end) {
        int value = nums[start];
        int left = start;
        int right =  end;

        while (left < right) {
            // 必须先从后面遍历比较

            while ( (left < right) && nums[right] >= value) {
                right--;
            }
            // 然后再从前面进行遍历比较
            // 然后才可以让获得的基准值是
            while ( (left < right) && nums[left] <= value) {
                left++;
            }

            // 左右两边 进行交换
            swap(nums, left, right);
        }
        // left 和 right 相遇了
        swap(nums, left, start);
        return left;

    }

    private static void swap(int[] nums, int i, int j) {
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }

    public static void main(String[] args) {
        int[] nums = {1,2,3,8,7,6,4};
        commonSort(nums);
        for (int i = 0; i < nums.length; i++) {
            System.out.print(nums[i] + " ");
        }
    }

}

直接插入排序

package 直接插入排序;


/**
 *  时间复杂度  最好O(n) 最坏O(n2)
 *  空间复杂度  O(1)
 *  稳定
 *  不会改变两个数字的相对顺序
 * */
public class InsertSort {


    // 工作原理就是设置有序区间 然后逐个比较
    // 比较之后扩大有序区间
    public static void commonSort(int nums[]) {
        /**
        *  7, 3, 2, 4, 6, 8
         *  第一次循环  x=nums[1]=3  c=0
         *             nums[c]=7 > 3
         *             nums[c+1]=nums[1]=nums[c]=7
         *       for循环结束 c-- c=-1
         *             nums[0]=3
         *       得到 3,7,2,4,6,8
         *  第二次循环  x=nums[2]=2 c=1
         *             nums[c]=7 > 2
        * */
        for (int i = 1; i < nums.length; i++) {
            // 第一次开始的时候设置有序区间
            // 每一次的比较都是让后一个和前面的有序区间顺序比较
            int x = nums[i]; // 有序区间接下来的一个

            int c = i -1; // 有序区间最后一个

            // 从有序区间的最后后面开始比较 如果比有序区间的最后一个大 直接赋值
            // 如果小的话 进入有序区间 依次进行比较  进行交换
            for (; c >= 0 && nums[c] > x; c--) {
                nums[c + 1] = nums[c];
            }
            nums[c + 1] = x;
        }





        for(int i = 1; i < nums.length; i++) {
            int x = nums[i]; // 第二个
            int c = i-1;  // 第一个

            for (; c >= 0 && nums[i] > x ; c--) {
                nums[c+1] = nums[c];
            }

            nums[c+1] = x;
        }

    }

    public static void main(String[] args) {
        int[] nums = {1,2,3,8,7,6,4};
        commonSort(nums);
        for (int i = 0; i < nums.length; i++) {
            System.out.print(nums[i] + " ");
        }
    }

}

选择排序

package 选择排序;

/**
 * 时间复杂度 O(n2)
 * 空间复杂度 O(1)
 * 不稳定排序
 * */
public class SelectSort {

    /**
     *  第一个数 和 后面的依次比较 选择出最小的数
     *  然后最小的数和第一个数交换
     *  然后开始第二个数和后面的数开始比较
     * */

    public static void commonSort(int[] nums) {
        for (int i = 0; i < nums.length; i++) {

            int max = i;
            // int min = i;
            for (int j = i + 1; j < nums.length; j++) {
            //    if(nums[j] < nums[min]) {
            //        min = j;
            //    }

                // 开始顺序比较 比较那个是剩下的里面最大的
                // 并且取得下面得下标
                if (nums[j] > nums[max]) {
                    max = j;
                }
            }
            // 最终得到的max值不是i的话
            // 就证明要将max下标的数和i下标的数进行交换
            if(max != i) {
                int tmp = nums[i];
                nums[i] = nums[max];
                nums[max] = tmp;
            }
        }
    }

    public static void main(String[] args) {
        int[] nums = {1,2,3,8,7,6,4};
        commonSort(nums);
        for (int i = 0; i < nums.length; i++) {
            System.out.print(nums[i] + " ");
        }
    }
}

稳定排序和不稳定排序

稳定排序 : 冒泡排序 归并排序 插入排序
不稳定排序:希尔排序 快排 选择排序 堆排

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值