题意:一个含有n项的数列(n<=2000000),求出每一项前的m个数到它这个区间内的最小值。若前面的数不足m项则从第1个数开始,若前面没有数则输出0。
RMQ代码如下:
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=2e6+6;
int dp[maxn][25];
int a[maxn];
void init_dp(int n)
{
for(int i=1;i<=n;++i) dp[i][0]=a[i];
for(int j=1;(1<<j)<=n;++j)
for(int i=1;i+(1<<j)-1<=n;++i)
dp[i][j]=min(dp[i][j-1],dp[i+(1<<(j-1))][j-1]);
}
int RMQ(int l,int r)
{
int k=0;
while((1<<(k+1))<=r-l+1) ++k;
return min(dp[l][k],dp[r-(1<<k)+1][k]);
}
int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
init_dp(n);
for(int i=1;i<=n;++i)
{
int l,r;
r=i-1; l=r-m+1;
if(r<1)
{
printf("0\n");
continue;
}
else if(l<1) l=1;
printf("%d\n",RMQ(l,r));
}
return 0;
}
然而,用RMQ会MLE(hhhh),所以后面还是得用成笛卡尔树过。
笛卡尔树代码如下:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<stack>
#pragma comment(linker,"/STACK:102400000,102400000")
using namespace std;
const int maxn=2e6+5;
int a[maxn],n;
int fa[maxn],ls[maxn],rs[maxn];
int build()
{
stack<int> st; //存放节点的key值
int rt,last;
for(int i=1;i<=n;++i)
{
last=0;
while(!st.empty())
{
if(a[st.top()]<a[i])
{
rt=st.top();
if(rs[rt])
{
fa[rs[rt]]=i;
ls[i]=rs[rt];
}
rs[rt]=i;
fa[i]=rt;
break;
}
last=st.top(); st.pop();
}
if(st.empty()&&last)
{
fa[last]=i;
ls[i]=last;
}
st.push(i);
}
while(!st.empty()) rt=st.top(), st.pop();
return rt;
}
int query(int root,int l,int r)
{
while(root<l||root>r)
root= root<l? rs[root]:ls[root];
return root;
}
void init()
{
memset(ls,0,sizeof(ls));
memset(rs,0,sizeof(rs));
memset(fa,0,sizeof(fa));
}
int main()
{
int m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)
scanf("%d",&a[i]);
init();
int root=build();
//for(int i=1;i<=n;i++) cout<<a[i]<<" ";cout<<endl<<root<<endl;;
//cout<<query(root,1,6)<<endl;
for(int i=1;i<=n;++i)
{
int l,r;
r=i-1; l=r-m+1;
if(r<1)
{
printf("0\n");
continue;
}
else if(l<1) l=1;
printf("%d\n",a[query(root,l,r)]);
}
return 0;
}