P1440 求m区间内的最小值 题解

博客探讨了在给定n个数和m的情况下,如何高效地求出所有1≤i≤n中minmax(1,i−m+1)iai的解。通过分析,指出朴素解法的时间复杂度为O(n^2),不适用。接着介绍了使用线段树、树状数组、RMQ等数据结构可以达到O(nlogn),但仍不够理想。文章提出利用队列优化的方法,每次只进行一次入队和出队操作,实现了O(n)的时间复杂度,并成功获得了100pts的实际得分。" 83939182,1846575,CICS安装与配置详细步骤,"['CICS', 'DB2', '系统配置']
摘要由CSDN通过智能技术生成

博客园同步

原题链接

简要题意:

给定 n n n 个数 { a i } \{a_i\} {ai} 和一个 m m m,输出所有 1 ≤ i ≤ n 1 \leq i \leq n 1in min ⁡ max ⁡ ( 1 , i − m + 1 ) i a i \min_{\max(1, i-m+1)}^{i} a_i minmax(1,im+1)iai.

n , m ≤ 2 × 1 0 6 n,m \leq 2 \times 10^6 n,m2×106.

显然这就是 对每个数求出其前 m m m 个数的最小值

朴素令 f i = min ⁡ max ⁡ ( 1 , i − m + 1 ) i a i f_i = \min_{\max(1, i-m+1)}^{i} a_i fi=minmax(1,im+1)iai O ( n 2 ) \mathcal{O}(n^2) O(n2) 炸的飞起。

当然你用线段树,树状数组, RMQ \text{RMQ} RMQ 来维护区间最小都是 O ( n log ⁡ n ) \mathcal{O}(n \log n) O(nlogn) 的,不够优,常数还不一定能过。

我们考虑如何从 [ l , r ] → [ l + 1 , r + 1 ] [l,r] \rightarrow [l+1,r+1] [l,r][l+1,r+1] 即可。

用一个队列 q q q,维护当前 可能会影响答案的编号

什么叫做 可能会影响答案

比方说当前求的是编号 i i i 的答案,那么显然,编号 u < i − m + 1 u<i-m+1 u<im+1 就应该出队,因为 所以包括 i i i 在内之后的节点都不可能用到编号 u u u 来作为决策了

其次,如果存在 u u u 使得 u < i , a u > a i u < i , a_u > a_i u<i,au>ai,这时候你会发现, i i i 节点的价值比 u u u 更高。因为, i i i 节点及以后的点用 i i i 的次数比用 u u u 的次数多,而 i i i 的决策又始终比 u u u,那么 u u u 就可以出队了。

我们把当前区间的最小值编号始终放在第一位,以便取出。

时间复杂度: O ( n ) \mathcal{O}(n) O(n).(每个点入队一次,出队一次)

实际得分: 100 p t s 100pts 100pts.

#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;

const int N=2e6+1;

inline int read(){char ch=getchar(); int f=1; while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
	int x=0; while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar(); return x*f;}

inline void write(int x) {
	if(x<0) {putchar('-');write(-x);return;}
	if(x<10) {putchar(char(x%10+'0'));return;}
	write(x/10);putchar(char(x%10+'0'));
}

int n,m,a[N],q[N];
int l=1,r=0;

int main() {
	n=read(),m=read();
	for(int i=1;i<=n;i++) a[i]=read();
	for(int i=1;i<=n;i++) {
		printf("%d\n",a[q[l]]);
		while(i-q[l]+1>m && l<=r) l++; //无效节点
		while(a[i]<a[q[r]] && l<=r) r--; //i 比当前节点更优
		q[++r]=i; //i 入队作为一个新的决策
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值