简要题意:
给定 n n n 个数 { a i } \{a_i\} {ai} 和一个 m m m,输出所有 1 ≤ i ≤ n 1 \leq i \leq n 1≤i≤n 的 min max ( 1 , i − m + 1 ) i a i \min_{\max(1, i-m+1)}^{i} a_i minmax(1,i−m+1)iai.
n , m ≤ 2 × 1 0 6 n,m \leq 2 \times 10^6 n,m≤2×106.
显然这就是 对每个数求出其前 m m m 个数的最小值。
朴素令 f i = min max ( 1 , i − m + 1 ) i a i f_i = \min_{\max(1, i-m+1)}^{i} a_i fi=minmax(1,i−m+1)iai, O ( n 2 ) \mathcal{O}(n^2) O(n2) 炸的飞起。
当然你用线段树,树状数组, RMQ \text{RMQ} RMQ 来维护区间最小都是 O ( n log n ) \mathcal{O}(n \log n) O(nlogn) 的,不够优,常数还不一定能过。
我们考虑如何从 [ l , r ] → [ l + 1 , r + 1 ] [l,r] \rightarrow [l+1,r+1] [l,r]→[l+1,r+1] 即可。
用一个队列 q q q,维护当前 可能会影响答案的编号。
什么叫做 可能会影响答案?
比方说当前求的是编号 i i i 的答案,那么显然,编号 u < i − m + 1 u<i-m+1 u<i−m+1 就应该出队,因为 所以包括 i i i 在内之后的节点都不可能用到编号 u u u 来作为决策了。
其次,如果存在 u u u 使得 u < i , a u > a i u < i , a_u > a_i u<i,au>ai,这时候你会发现, i i i 节点的价值比 u u u 更高。因为, i i i 节点及以后的点用 i i i 的次数比用 u u u 的次数多,而 i i i 的决策又始终比 u u u 优,那么 u u u 就可以出队了。
我们把当前区间的最小值编号始终放在第一位,以便取出。
时间复杂度: O ( n ) \mathcal{O}(n) O(n).(每个点入队一次,出队一次)
实际得分: 100 p t s 100pts 100pts.
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
const int N=2e6+1;
inline int read(){char ch=getchar(); int f=1; while(ch<'0' || ch>'9') {if(ch=='-') f=-f; ch=getchar();}
int x=0; while(ch>='0' && ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar(); return x*f;}
inline void write(int x) {
if(x<0) {putchar('-');write(-x);return;}
if(x<10) {putchar(char(x%10+'0'));return;}
write(x/10);putchar(char(x%10+'0'));
}
int n,m,a[N],q[N];
int l=1,r=0;
int main() {
n=read(),m=read();
for(int i=1;i<=n;i++) a[i]=read();
for(int i=1;i<=n;i++) {
printf("%d\n",a[q[l]]);
while(i-q[l]+1>m && l<=r) l++; //无效节点
while(a[i]<a[q[r]] && l<=r) r--; //i 比当前节点更优
q[++r]=i; //i 入队作为一个新的决策
}
return 0;
}