HDU1698,Just a Hook(线段树)

这道题考察的是线段树的区间更新和区间查询。
关于线段树的区间更新操作,可参考博客:
https://www.cnblogs.com/TenosDoIt/p/3453089.html#f
PS:线段树的区间更新必须借助延迟标记(本人用lazy表示),否则时间复杂度会大很多很多。

**对于本题,线段树的节点储存的是sum1,sum2,sum3,表示1的数量,2的数量,3的数量,区间查询时返回的就是sum1+2 sum2+3 sum3,同时也要设置lazy1,lazy2,lazy3,分别表示对应1,2,3的延迟标记

代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1e5+5;
struct Node
{
	int l,r;
	int sum[4];
	bool lazy[4];	//用了bool类型
}tr[maxn<<2];

void Push_Up(int rt)
{
	for(int i=1;i<=3;++i)
		tr[rt].sum[i]=tr[rt<<1].sum[i]+tr[rt<<1|1].sum[i];
}

void Build(int rt,int l,int r)
{
	tr[rt].l=l;	tr[rt].r=r;
	for(int i=1;i<=3;++i)
		tr[rt].lazy[i]=0;	//所有lazy标记都初始化为0
	if(l==r)	//到了叶子节点
	{
		tr[rt].sum[1]=1;	//只有sum1=1,其他都为0
		tr[rt].sum[2]=0;
		tr[rt].sum[3]=0;
		return;
	}
	int mid=(l+r)>>1;	
	Build(rt<<1,l,mid);
	Build(rt<<1|1,mid+1,r);
	Push_Up(rt);
}

void Push_Down(int rt)	//Push_Down是用于更新子节点的 ,这时候lazy就发挥作用了
{
	int id=0;
	for(int i=1;i<=3;++i)	
	{
		if(tr[rt].lazy[i])
			id=i;
	}
	if(id)	//如果id不为0,说明子节点需要更新
	{
		tr[rt<<1].lazy[id]=tr[rt<<1|1].lazy[id]=1;
		tr[rt<<1].sum[id]=tr[rt<<1].r-tr[rt<<1].l+1;
		tr[rt<<1|1].sum[id]=tr[rt<<1|1].r-tr[rt<<1|1].l+1;
		for(int i=1;i<=3;++i)
			if(i!=id)
			{
				tr[rt<<1].lazy[i]=tr[rt<<1|1].lazy[i]=0;
				tr[rt<<1].sum[i]=tr[rt<<1|1].sum[i]=0;
			}
		tr[rt].lazy[id]=0;	//这里千万记得,更新完子节点后lazy就要置为0了
	}
}

void Update(int rt,int ql,int qr,int val)
{
	if(ql<=tr[rt].l&&tr[rt].r<=qr)
	{
		for(int i=1;i<=3;++i)	//因为我们一旦要进行区间更新,就是对整个区间进行修改,所以先把节点信息赋值为0
		{
			tr[rt].lazy[i]=0;
			tr[rt].sum[i]=0;
		}
		tr[rt].lazy[val]=1;	//再修改相应的lazy标记还有sum
		tr[rt].sum[val]=tr[rt].r-tr[rt].l+1;
		return;
	}
	Push_Down(rt);	//更新子节点
	int mid=(tr[rt].l+tr[rt].r)>>1;
	if(mid<ql)	Update(rt<<1|1,ql,qr,val);
	else if(mid>=qr)	Update(rt<<1,ql,qr,val);
	else
	{
		Update(rt<<1,ql,mid,val);
		Update(rt<<1|1,mid+1,qr,val);
	}
	Push_Up(rt);
}

void Query(int rt,int ql,int qr,int &sum)
{
	if(ql<=tr[rt].l&&tr[rt].r<=qr)
	{
		for(int i=1;i<=3;++i)
			sum+=i*tr[rt].sum[i];
		return;
	}
	Push_Down(rt);	//这里也要主要,在区间查询时也要更新子节点
	if(tr[rt].l==tr[rt].r)	return;
	int mid=(tr[rt].l+tr[rt].r)>>1;
	if(mid<ql)	Query(rt<<1|1,ql,qr,sum);
	else if(mid>=qr)	Query(rt<<1,ql,qr,sum);
	else
	{
		Query(rt<<1,ql,mid,sum);
		Query(rt<<1|1,mid+1,qr,sum);
	}
}

int main()
{
	int T,kase=0;
	scanf("%d",&T);
	while(T--)
	{
		int n,q;
		scanf("%d%d",&n,&q);;
		Build(1,1,n);
		while(q--)
		{
			int l,r,val;
			scanf("%d%d%d",&l,&r,&val);
			Update(1,l,r,val);	
		}
		int sum=0; 
		Query(1,1,n,sum); 
		printf("Case %d: The total value of the hook is %d.\n",++kase,sum);
	}
	return 0;
}

PS:线段树题目较为灵活,节点信息可以变化多样,多琢磨琢磨,发现题目的特点,从而找出节点应该要记录的信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值