这道题考察的是线段树的区间更新和区间查询。
关于线段树的区间更新操作,可参考博客:
https://www.cnblogs.com/TenosDoIt/p/3453089.html#f
PS:线段树的区间更新必须借助延迟标记(本人用lazy表示),否则时间复杂度会大很多很多。
**对于本题,线段树的节点储存的是sum1,sum2,sum3,表示1的数量,2的数量,3的数量,区间查询时返回的就是sum1+2 sum2+3 sum3,同时也要设置lazy1,lazy2,lazy3,分别表示对应1,2,3的延迟标记。
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=1e5+5;
struct Node
{
int l,r;
int sum[4];
bool lazy[4]; //用了bool类型
}tr[maxn<<2];
void Push_Up(int rt)
{
for(int i=1;i<=3;++i)
tr[rt].sum[i]=tr[rt<<1].sum[i]+tr[rt<<1|1].sum[i];
}
void Build(int rt,int l,int r)
{
tr[rt].l=l; tr[rt].r=r;
for(int i=1;i<=3;++i)
tr[rt].lazy[i]=0; //所有lazy标记都初始化为0
if(l==r) //到了叶子节点
{
tr[rt].sum[1]=1; //只有sum1=1,其他都为0
tr[rt].sum[2]=0;
tr[rt].sum[3]=0;
return;
}
int mid=(l+r)>>1;
Build(rt<<1,l,mid);
Build(rt<<1|1,mid+1,r);
Push_Up(rt);
}
void Push_Down(int rt) //Push_Down是用于更新子节点的 ,这时候lazy就发挥作用了
{
int id=0;
for(int i=1;i<=3;++i)
{
if(tr[rt].lazy[i])
id=i;
}
if(id) //如果id不为0,说明子节点需要更新
{
tr[rt<<1].lazy[id]=tr[rt<<1|1].lazy[id]=1;
tr[rt<<1].sum[id]=tr[rt<<1].r-tr[rt<<1].l+1;
tr[rt<<1|1].sum[id]=tr[rt<<1|1].r-tr[rt<<1|1].l+1;
for(int i=1;i<=3;++i)
if(i!=id)
{
tr[rt<<1].lazy[i]=tr[rt<<1|1].lazy[i]=0;
tr[rt<<1].sum[i]=tr[rt<<1|1].sum[i]=0;
}
tr[rt].lazy[id]=0; //这里千万记得,更新完子节点后lazy就要置为0了
}
}
void Update(int rt,int ql,int qr,int val)
{
if(ql<=tr[rt].l&&tr[rt].r<=qr)
{
for(int i=1;i<=3;++i) //因为我们一旦要进行区间更新,就是对整个区间进行修改,所以先把节点信息赋值为0
{
tr[rt].lazy[i]=0;
tr[rt].sum[i]=0;
}
tr[rt].lazy[val]=1; //再修改相应的lazy标记还有sum
tr[rt].sum[val]=tr[rt].r-tr[rt].l+1;
return;
}
Push_Down(rt); //更新子节点
int mid=(tr[rt].l+tr[rt].r)>>1;
if(mid<ql) Update(rt<<1|1,ql,qr,val);
else if(mid>=qr) Update(rt<<1,ql,qr,val);
else
{
Update(rt<<1,ql,mid,val);
Update(rt<<1|1,mid+1,qr,val);
}
Push_Up(rt);
}
void Query(int rt,int ql,int qr,int &sum)
{
if(ql<=tr[rt].l&&tr[rt].r<=qr)
{
for(int i=1;i<=3;++i)
sum+=i*tr[rt].sum[i];
return;
}
Push_Down(rt); //这里也要主要,在区间查询时也要更新子节点
if(tr[rt].l==tr[rt].r) return;
int mid=(tr[rt].l+tr[rt].r)>>1;
if(mid<ql) Query(rt<<1|1,ql,qr,sum);
else if(mid>=qr) Query(rt<<1,ql,qr,sum);
else
{
Query(rt<<1,ql,mid,sum);
Query(rt<<1|1,mid+1,qr,sum);
}
}
int main()
{
int T,kase=0;
scanf("%d",&T);
while(T--)
{
int n,q;
scanf("%d%d",&n,&q);;
Build(1,1,n);
while(q--)
{
int l,r,val;
scanf("%d%d%d",&l,&r,&val);
Update(1,l,r,val);
}
int sum=0;
Query(1,1,n,sum);
printf("Case %d: The total value of the hook is %d.\n",++kase,sum);
}
return 0;
}
PS:线段树题目较为灵活,节点信息可以变化多样,多琢磨琢磨,发现题目的特点,从而找出节点应该要记录的信息。