判断全排列的出现次序

这篇博客探讨了如何利用康托展开式快速计算全排列的出现次序,以解决超时问题。通过示例解释了康托公式的应用,并提供了逆康托公式来找出特定排列。内容包括具体的代码实现,例如如何找出给定全排列序号对应的序列。
摘要由CSDN通过智能技术生成

假如你使用模拟全排列计数,基本会超时;

实现原理:康托展开式

X=a[n](n-1)!+a[n-1](n-2)!+…+a[i]*(i-1)!+…+a[2]*1!+a[1]*0![1]

其中a[i]为当前未出现的元素中是排在第几个(从0开始)

列如 {1,2,3} 按从小到大排列一共6个。123 132 213 231 312 321 。

输入321,让你它在全排列中是第几个,321是6;

具体代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
//斐波那契表
long int fac[]={
  1,1,2,6,24,120,720,5040,40320,362880,3628800,39916800};
long cantor(int s[],int n)
{
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值